Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Atomic Force Microscopy Based Dna Sensing And Manipulation, Matthew Shubert May 2022

Atomic Force Microscopy Based Dna Sensing And Manipulation, Matthew Shubert

Mechanical Engineering Undergraduate Honors Theses

Sequencing DNA provides a positive impact for the biomedical community by understanding a wide variety of applications such as human genetics, disease, and pathogens. The reason the Arkansas Micro & Nano Systems lab is involved with research in DNA sequencing is due to the current, leading industry method. Nanopore sequencing was developed by Oxford Nanopore Technology in which its sequencing method separates double stranded DNA to electrically characterize individual nucleotides traveling through a charged nanopore. Unfortunately, nanopore sequencing uses biological materials that require a shelf life and drives high cost. Therefore, the Arkansas Micro & Nano Systems lab has developed …


Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu Jul 2019

Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu

Mechanical & Aerospace Engineering Theses & Dissertations

Polymerase Chain Reaction (PCR) is a relatively novel technique to amplify a few copies of DNA to a detectable level. PCR has already become common in biomedical research, criminal forensics, molecular archaeology, and so on. Many have attempted to develop PCR devices in numerous types for the purpose of the lab-on-chip (LOC) or point-of-care (POC). To use PCR devices for POC lab testing, the price must be lower, and the performance should be comparable to the lab devices. For current practices with the existing methods, the price is pushed up higher partially due to too much dependence on numerous developmental …


Molecular Combing Of Dna Nanofibers And Comparison To Electrospinning, Tanner L. Buresh Apr 2016

Molecular Combing Of Dna Nanofibers And Comparison To Electrospinning, Tanner L. Buresh

UCARE Research Products

The goal of these experiments was to create DNA nanofibers through the method of molecular combing (MC) and then compare the MC fibers to fibers created with electrospinning (ES). The experiment was designed and initial samples were created. After confirming that the method would succeed in creating DNA fibers, several parametric studies were performed in order to optimize the experiment and create the most uniform fibers possible. The parametric studies were done on the following variables: substrate material, pH level of DNA solution, and DNA solution concentration. After completion of all experiments, it was determined that although fibers could be …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Feb 2013

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …


Fabrication And Characterization Of A Polymeric Nanofluidic Device For Dna Analysis, Jiahao Wu Jan 2013

Fabrication And Characterization Of A Polymeric Nanofluidic Device For Dna Analysis, Jiahao Wu

LSU Doctoral Dissertations

The growing needs for cheaper and faster sequencing of long biopolymers such as DNA and RNA have prompted the development of new technologies. Among the novel techniques for analyzing these biopolymers, an approach using nanochannel based fluidic devices is attractive because it is a label-free, amplification-free, single-molecule method that can be scaled for high-throughput analysis. Despite recent demonstrations of nanochannel based fluidic devices for analyzing physical properties of such biopolymers, most of the devices have been fabricated in inorganic materials such as silicon, silicon nitride and glass using expensive high end nanofabrication techniques such as focused ion beam and electron …


Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten Jun 2011

Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten

Theses and Dissertations

A novel method for charged macromolecule delivery, called nanoinjection, has been developed at Brigham Young University. Nanoinjection combines micro-fabrication technology, mechanism design, and nano-scale electrical phenomenon to transport exogenous DNA across cell membranes on a nano-featured lance. DNA is electrically accumulated on the lance, precision movements of microelectromechanical systems (MEMS) physically insert the lance into cell, and DNA is electrically released from the lance into the cell. Penetration into the cell is achieved through a two-phase, self-reconfiguring metamorphic mechanism. The surface-micromachined, metamorphic nanoinjector mechanism elevates the lance above the fabrication substrate, then translates in-plane at a constant height as the …


Role Of Hydrodynamic Behavior Of Dna Molecules In Dielectrophoretic Polarization Under The Action Of An Electric Field, Hui Zhao Jan 2011

Role Of Hydrodynamic Behavior Of Dna Molecules In Dielectrophoretic Polarization Under The Action Of An Electric Field, Hui Zhao

Mechanical Engineering Faculty Research

A continuum model is developed to predict the dielectrophoretic polarizability of coiled DNA molecules under the action of an alternating current electric field. The model approximates the coiled DNA molecule as a charged porous spherical particle. The model explains the discrepancies among scaling laws of polarizability of different-sized DNA molecules with contour length and such discrepancies are attributed to different hydrodynamic behavior. With zero or one fitting parameter, theoretical predictions are in good agreement with various experimental data, even though in experiments there are some uncertainties in regard to certain parameters.


Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza Jun 2009

Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza

Matteo Rinaldi

In this work a nano-enabled gravimetric chemical sensor prototype based on single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNT) as nano-functionalization layer for Aluminun Nitride (AIN) contour-mode resonant-MEMS gravimetric sensors has been demonstrated. Two resonators fabricated on the same silicon chip and operating at different resonance frequencies, 287 and 450 MHz, were functionalized with this novel bio-coating layer to experimentally prove the capability of two distinct single strands of DNA bound to SWNT to enhance differently the adsorption of volatile organic compounds such as dinitroluene (DNT, simulant for explosive vapor) and dymethyl-methylphosphonate (DMMP, a simulant for nerve agent sarin). The …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Jun 2009

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …