Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Entire DC Network

Effect Of Geometry And Fluid Viscosity On Dynamics Of Fluid-Filled Cracks: Insights From Analog Experimental Observations, Haitao Cao, Ezequiel F. Medici, Gregory P. Waite, Roohollah Askari Nov 2020

Effect Of Geometry And Fluid Viscosity On Dynamics Of Fluid-Filled Cracks: Insights From Analog Experimental Observations, Haitao Cao, Ezequiel F. Medici, Gregory P. Waite, Roohollah Askari

Michigan Tech Publications

Fluid-filled volumes in geological systems can change the local stress field in the host rock and may induce brittle deformation as well as crack propagation. Although the mechanisms relating fluid pressure perturbations and seismicity have been widely studied, the fluid-solid interaction inside the crack of a host rock is still not well understood. An analog experimental model of fluid intrusion in cracks between planar layers has been developed to study stress conditions at the margins and tips. A combined high-speed shadowgraph and a photoelasticity imaging system is used to visualize the fluid dynamics and induced stresses on the solid matrix. …


Concrete Crack Detection And Monitoring Using A Capacitive Dense Sensor Array, Jin Yan, Austin Downey, Alessandro Cancelli, Simon Laflamme, An Chen, Jian Li, Filippo Ubertini Apr 2019

Concrete Crack Detection And Monitoring Using A Capacitive Dense Sensor Array, Jin Yan, Austin Downey, Alessandro Cancelli, Simon Laflamme, An Chen, Jian Li, Filippo Ubertini

Faculty Publications

Cracks in concrete structures can be indicators of important damage and may significantly affect durability. Their timely identification can be used to ensure structural safety and guide on-time maintenance operations. Structural health monitoring solutions, such as strain gauges and fiber optics systems, have been proposed for the automatic monitoring of such cracks. However, these solutions become economically difficult to deploy when the surface under investigation is very large. This paper proposes to leverage a novel sensing skin for monitoring cracks in concrete structures. This sensing skin is constituted of a flexible electronic termed soft elastomeric capacitor, which detects a change …


Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke Dec 2018

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke

Civil Engineering ETDs

Ductile failure of metals has been the focus of research efforts within academia and industry for many years since it is tremendously important for understanding the failure of structures under extreme loading conditions. However, limited research has been dedicated to elevated temperature ductile failure, which is critical for evaluating catastrophic events such as industrial, structural or shipping vessel fires. A detailed investigation was conducted on the structural response of Duplex Stainless Steel at elevated temperatures. The temperature dependence of elastic modulus, yield strength, ultimate strength, and ductility was measured up to 1000°C and a continuum damage plasticity model was developed. …


Dynamic Fracture Of Pmma, Intefacial Failure, And Local Heating, Javad Mehrmashhadi, Longzhen Wang, Florin Bobaru Ph.D. Nov 2018

Dynamic Fracture Of Pmma, Intefacial Failure, And Local Heating, Javad Mehrmashhadi, Longzhen Wang, Florin Bobaru Ph.D.

Javad Mehrmashhadi

Recent impact experiments showed the influence of a strong or weak interface in a bi-layered PMMA material has on dynamic fracture mechanisms. We show that a linear elastic with brittle damage peridynamic model, which works very well for glass, leads to crack propagation speeds significantly faster than those measured experimentally in the PMMA system. We propose an explanation for this behavior: localized heating in the region near the crack tip (due to high strain rates) softens the material sufficiently to make a difference. We introduce this effect in our peridynamic model, via a bi-linear bond force-strain relationship, and the computed …


An Investigation On The Stress Intensity Factor Of Surface Micro-Cracks, Sirisha Divya Arli Jan 2017

An Investigation On The Stress Intensity Factor Of Surface Micro-Cracks, Sirisha Divya Arli

Browse all Theses and Dissertations

The contact fatigue failure in the form of micro or macro-scale pitting is an important failure mode for rolling mechanical elements, such as bearings and gears that are widely used in the automotive, aerospace and wind turbine fields. The micro-pitting process in some cases, gradually removes the surface material through fatigue wear, altering the geometry of the contact surfaces to alleviate the contact pressure decelerating the continued pitting rate. The propagation of the micro-cracks in other cases, goes deep into the material along a shallow angle, turns parallel to the surface at a certain depth, where the maximum shear or …


Fatigue Analysis Of The Welded Region In The Automotive Torsion Beam Rear Suspension System, Nan Zhan, Xiaochuan Zhang Oct 2016

Fatigue Analysis Of The Welded Region In The Automotive Torsion Beam Rear Suspension System, Nan Zhan, Xiaochuan Zhang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Analysis Of Fatigue Crack Propagation In Welded Steels, Roberto Angelo Demarte Oct 2016

Analysis Of Fatigue Crack Propagation In Welded Steels, Roberto Angelo Demarte

Master's Theses (2009 -)

This thesis presents the study of fatigue crack propagation in a low carbon steel (ASTM A36) and two different weld metals (AWS A5.18 and AWS A5.28). Fatigue crack propagation data for each weld wire is of interest because of its use for predicting and analyzing service failures. Fatigue crack growth test specimens were developed and fabricated for the low carbon steel base metal and for each weld wire. Weld specimens were stress relieved prior to fatigue testing. Specimens were tested on a closed-loop servo hydraulic test machine at two different load ratios. Fatigue test data was collected to characterize both …


Study Of Chaotic Ultrasound And Frequency Sweep Excitations In Sonic Ir Nde Technology, Ding Zhang Jan 2014

Study Of Chaotic Ultrasound And Frequency Sweep Excitations In Sonic Ir Nde Technology, Ding Zhang

Wayne State University Dissertations

Sonic Infrared (IR) Imaging Nondestructive Evaluation (NDE) technology has shown inherent advantages, such as fast detection for all direction and all dimension flaws, for both metal and composite materials. The purpose of this dissertation is to study and investigate the physical process of two most important methods, frequency sweep excitation and chaotic excitation, to improve the defect detection ability of Sonic IR technology.

The tool used in our study is known as finite element analysis (FEA). According to test process of Sonic IR technology, some special technologies were developed in FEA simulation, such as creating cracks with flat contact surfaces …


A Finite Difference Implementation Of Phase Field Theory, Nicholas W. Oren Dec 2012

A Finite Difference Implementation Of Phase Field Theory, Nicholas W. Oren

Master's Theses

Computationally handling cracks generally results in numerically unstable results. Specifically handling the infinite stresses at the crack tip as well as the abrupt change from virgin material to failed material creates numerical instabilities. This project seeks to determine if phase field physics theory, particularly the physics based modification developed by B. N. Cassenti, can be appropriately applied to cracks. Phase field theory introduces an additional state variable, the phase of the material. The phase represents the level of failure (by cracking), and diffuses the failure along a crack by specified equations. The modification, based on a variational principle, was tested …


A Study Of Solder Joint Failure Criteria, Jianbiao Pan, Julie Silk Oct 2011

A Study Of Solder Joint Failure Criteria, Jianbiao Pan, Julie Silk

Industrial and Manufacturing Engineering

One of the challenges in an experimental study of solder joint reliability is to determine when cracks occur in a solder joint or when a solder joint fails. Cracks in a real solder joint are difficult to identify using an X-Ray system. Cross-sectioning and scanning electron microscopy (SEM) is a destructive method. A common non-destructive test method is to monitor resistance increase in a solder joint or a daisy-chain. However, no scientific research has been done in establishing the relationship between the crack area of an interconnection and the change in resistance of the interconnection. This paper proposes a method …


Smart Rotating Machines For Structural Health Monitoring, Dmitry Leonidovich Storozhev Jan 2009

Smart Rotating Machines For Structural Health Monitoring, Dmitry Leonidovich Storozhev

ETD Archive

The objective of this thesis is to explore an innovative approach to the on-line health monitoring of rotating machinery in the presence of structural damage using active magnetic bearings (AMBs). First, the detailed model of the rotor with the breathing transverse crack is developed using finite element method. Next, the experimental data from the rotating magnetically levitated healthy and cracked shafts, under specially designed external excitation force, was collected, analyzed and compared with the computer simulation. The obtained results demonstrate that the presented on-line health monitoring technique is very effective for detection of the structural damage in rotating machinery, and …