Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Additive manufacturing

2019

Institution
Publication
Publication Type

Articles 1 - 27 of 27

Full-Text Articles in Entire DC Network

Additively Manufactured Continuous Carbon Fiber Thermoplastic Composites For High-Performance Applications, Nekoda Van De Werken Nov 2019

Additively Manufactured Continuous Carbon Fiber Thermoplastic Composites For High-Performance Applications, Nekoda Van De Werken

Mechanical Engineering ETDs

The goal of this dissertation is to provide a foundation for the advancement of additive manufacturing (AM) toward production of high-performance carbon fiber reinforced polymer matrix composites (CFRPs). AM can provide valuable advantages over conventional composite manufacturing techniques, including the control over fiber orientation, capability of manufacturing complex geometries, out-of-autoclave processing, elimination of the need for composite tooling, and the ability to perform lights-out manufacturing. Currently, however, a suite of challenges related to modelling, design, manufacturing defects, and general limitations in the current understanding of the processing-structure-property relationships exist in AM of composites. To this end, this dissertation investigates novel …


Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce Oct 2019

Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce

Michigan Tech Publications

In order to accelerate deployment of distributed recycling by providing low-cost feed stocks of granulated post-consumer waste plastic, this study analyzes an open source waste plastic granulator system. It is designed, built, and tested for its ability to convert post-consumer waste, 3D printed products and waste into polymer feedstock for recyclebots of fused particle/granule printers. The technical specifications of the device are quantified in terms of power consumption (380 to 404 W for PET and PLA, respectively) and particle size distribution. The open source device can be fabricated for less than $2000 USD in materials. The experimentally measured power use …


Smart Additive Manufacturing: In-Process Sensing And Data Analytics For Online Defect Detection In Metal Additive Manufacturing Processes, Mohammad Montazeri Oct 2019

Smart Additive Manufacturing: In-Process Sensing And Data Analytics For Online Defect Detection In Metal Additive Manufacturing Processes, Mohammad Montazeri

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The goal of this dissertation is to detect the incipient flaws in metal parts made using additive manufacturing processes (3D printing). The key idea is to embed sensors inside a 3D printing machine and conclude whether there are defects in the part as it is being built by analyzing the sensor data using artificial intelligence (machine learning). This is an important area of research, because, despite their revolutionary potential, additive manufacturing processes are yet to find wider acceptance in safety-critical industries, such as aerospace and biomedical, given their propensity to form defects. The presence of defects, such as porosity, can …


Adhesion Testing Of Printed Inks While Varying The Surface Treatment Of Polymer Substrates, Clayton Neff, Edwin Elston, Amanda Schrand, Nathan B. Crane Sep 2019

Adhesion Testing Of Printed Inks While Varying The Surface Treatment Of Polymer Substrates, Clayton Neff, Edwin Elston, Amanda Schrand, Nathan B. Crane

Faculty Publications

Additive manufacturing with conductive materials enables new approaches to printed electronics that are unachievable by standard electronics manufacturing processes. In particular, electronics can be embedded directly into structural components in nearly arbitrary 3D space. While these methods incorporate many of the same materials, the new processing methods require standard test methods to compare materials, processing conditions, and determine design limits. This work demonstrates a test method to quantitatively measure the adhesion failure of printed inks deposited on a substrate without changing the ink printing conditions. The proposed method is an adaption of single lap shear testing in which the lap …


Mechanical And Temperature Resilience Of Multi-Material Systems For Printed Electronics Packaging, Clayton Neff, Justin Nussbaum, Chris Gardiner, Nathan B. Crane, James L. Zunino, Mike Newton Sep 2019

Mechanical And Temperature Resilience Of Multi-Material Systems For Printed Electronics Packaging, Clayton Neff, Justin Nussbaum, Chris Gardiner, Nathan B. Crane, James L. Zunino, Mike Newton

Faculty Publications

In this work, two AM technologies were utilized to compare the effectiveness of fabricating a simple electronic device with a conductive trace and hollow cylinder representative of ‘printed packaging’ that would survive harsh environmental conditions. The printed packaging cylinder delineates printed potting for electronics packaging. An nScrypt direct write (DW) system was the primary manufacturing system but a developing technology—coined large area projection sintering (LAPS)—manufactured a subset of samples for comparison. The tests follow Military Standard (MIL STD) 883K and include resiliency evaluation for die shear strength, temperature cycling, thermal shock, and high G loading by mechanical shock. Results indicate …


Fabrication And Characterization Of Alₓcrcufeni₂ High-Entropy Alloys Coatings By Laser Metal Deposition, Wenyuan Cui, Xinchang Zhang, Lan Li, Yitao Chen, Tan Pan, Frank W. Liou Aug 2019

Fabrication And Characterization Of Alₓcrcufeni₂ High-Entropy Alloys Coatings By Laser Metal Deposition, Wenyuan Cui, Xinchang Zhang, Lan Li, Yitao Chen, Tan Pan, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

High-entropy alloys (HEAs) are becoming new hot spots in the metallic materials community, which are defined to contain equiatomic or close-to-equiatomic compositions. HEAs can possess many interesting mechanical properties, and in particular, they have the great potential to be used as coating materials requiring high hardness and wear resistance. In this study, the feasibility of fabrication AlₓCrCuFeNi₂ (x=0,0.75) HEAs was investigated via laser metal deposition from elemental powders. The microstructure, phase structure, and hardness were studied by an optical microscope, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), electron backscatter diffraction (EBSD) and Vickers hardness tester. The bonding between the …


Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy Jul 2019

Modeling Thermal And Mechanical Cancellation Of Residual Stress From Hybrid Additive Manufacturing By Laser Peening, Guru Madireddy, Chao Li, Jingfu Liu, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process …


Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis Jul 2019

Mechanical Performance Of Structural Systems With Missing Members: From Buildings To Architected Materials, Panagiotis Pantidis

Doctoral Dissertations

Structural systems are potentially subjected to damage initiating scenarios throughout the course of their service time. Depending on the nature and extent of the damaging event, they may experience significant reduction or even complete loss of their mechanical performance. This dissertation delves into the mechanics of structural systems under the notion of missing members from their domain, investigating types of structural systems: a) multi-story steel framed buildings, and b) materials with a truss-lattice microstructure. Part I of the dissertation investigates the performance of multi-story steel framed buildings under a column removal scenario, developing an analytical framework for their quasi-static robustness …


Micro-Ct Evaluation Of Defects In Ti-6al-4v Parts Fabricated By Metal Additive Manufacturing, Haijun Gong, Venkata Karthik Nadimpalli, Khalid Rafi, Thomas Starr, Brent Stucker Jun 2019

Micro-Ct Evaluation Of Defects In Ti-6al-4v Parts Fabricated By Metal Additive Manufacturing, Haijun Gong, Venkata Karthik Nadimpalli, Khalid Rafi, Thomas Starr, Brent Stucker

Department of Manufacturing Engineering Faculty Research and Publications

In this study, micro-computed tomography (CT) is utilized to detect defects of Ti-6Al-4V specimens fabricated by selective laser melting (SLM) and electron beam melting (EBM), which are two popular metal additive manufacturing methods. SLM and EBM specimens were fabricated with random defects at a specific porosity. The capability of micro-CT to evaluate inclusion defects in the SLM and EBM specimens is discussed. The porosity of EBM specimens was analyzed through image processing of CT single slices. An empirical method is also proposed to estimate the porosity of reconstructed models of the CT scan.


A Hybrid Process Integrating Reverse Engineering, Pre-Repair Processing, Additive Manufacturing, And Material Testing For Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Wei Li, Frank W. Liou Jun 2019

A Hybrid Process Integrating Reverse Engineering, Pre-Repair Processing, Additive Manufacturing, And Material Testing For Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Wei Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metallic components can gain defects such as dents, cracks, wear, heat checks, deformation, etc., that need to be repaired before reinserting into service for extending the lifespan of these parts. In this study, a hybrid process was developed to integrate reverse engineering, pre-repair processing, additive manufacturing, and material testing for the purpose of part remanufacturing. Worn components with varied defects were scanned using a 3D scanner to recreate the three-dimensional models. Pre-repair processing methods which include pre-repair machining and heat-treatment were introduced. Strategies for pre-repair machining of defects including surface impact damage, surface superficial damage and cracking were presented. Pre-repair …


Evaluation Of Tensile Properties For Selective Laser Melted 316l Stainless Steel And The Influence Of Inherent Process Features, Paul Swartz Jun 2019

Evaluation Of Tensile Properties For Selective Laser Melted 316l Stainless Steel And The Influence Of Inherent Process Features, Paul Swartz

Master's Theses

Optimal print parameters for additively manufacturing 316L stainless steel using selective laser melting (SLM) at Cal Poly had previously been identified. In order to further support the viability of the current settings, tensile material characteristics were needed. Furthermore, reliable performance of the as-printed material had to be demonstrated. Any influence on the static performance of parts in the as-printed condition inherent to the SLM manufacturing process itself needed to be identified. Tensile testing was conducted to determine the properties of material in the as-printed condition. So as to have confidence in the experimental results, other investigations were also conducted to …


Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce May 2019

Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ASTM-approved …


Open Source Completely 3-D Printable Centrifuge, Salil S. Sule, Aliaksei Petsiuk, Joshua M. Pearce May 2019

Open Source Completely 3-D Printable Centrifuge, Salil S. Sule, Aliaksei Petsiuk, Joshua M. Pearce

Michigan Tech Publications

Centrifuges are commonly required devices in medical diagnostics facilities as well as scientific laboratories. Although there are commercial and open source centrifuges, the costs of the former and the required electricity to operate the latter limit accessibility in resource-constrained settings. There is a need for low-cost, human-powered, verified, and reliable lab-scale centrifuges. This study provides the designs for a low-cost 100% 3-D printed centrifuge, which can be fabricated on any low-cost RepRap-class (self-replicating rapid prototyper) fused filament fabrication (FFF)- or fused particle fabrication (FPF)-based 3-D printer. In addition, validation procedures are provided using a web camera and free and open …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


An Energy Profile Model For Fused Deposition Modeling 3d Printing Process, Calvin Hawkins Jan 2019

An Energy Profile Model For Fused Deposition Modeling 3d Printing Process, Calvin Hawkins

Research Opportunities for Engineering Undergraduates (ROEU) Program 2018-19

This project develops a strategy to monitor and estimate the energy consumption of fused deposition modeling (FDM) additive manufacturing, which will benefit manufacturers and designers seeking to design and manufacture products with minimal energy consumption.


Additive Manufactured Ear Pinna For Spatial Cue Preservation In Custom Hearing Devices, Carlos Felipe Acosta Carrasco Jan 2019

Additive Manufactured Ear Pinna For Spatial Cue Preservation In Custom Hearing Devices, Carlos Felipe Acosta Carrasco

Open Access Theses & Dissertations

Advancements in additive manufacturing/3D printing technologies has permitted the fabrication of intricate features such as the ones present in the human ear. The outer ear, also known as the pinna, allows for the spectral cues from incoming sound to be captured and identified. The hypothesis of the preservation of auditory localization and externalization relies on the fabrication of an ear pinna via additive manufacturing embedded into a headset for spectral cue preservation and hearing protection. Before exploring these custom circumaural hearing devices, a study on the fabrication process of AM pinnae was performed. The KEMAR system for acoustic research was …


3d Printing In Low Resource Healthcare Settings: Analysis Of Potential Implementations, Alenna Beroza Jan 2019

3d Printing In Low Resource Healthcare Settings: Analysis Of Potential Implementations, Alenna Beroza

Dissertations, Master's Theses and Master's Reports

3D printing has gained significant momentum in the past ten years, and its unique advantages make it especially ideal for use in low resource healthcare settings, where many designs have already been successfully implemented. Yet, little has been studied on how 3D printing can be sustainably and functionally implemented in low resource healthcare systems as a manufacturing practice. In this report, three business models are proposed for this implementation: In-House Operator, Independent Operator, and Print Farm. These models were then tested over four months in Kisumu county, Kenya, at two workshops and seven public hospitals. I worked with local medical …


Glocal Integrity In 420 Stainless Steel By Asynchronous Laser Processing, Michael P. Sealy, Haitham Hadidi, Cody Kanger, X. L. Yan, Bai Cui, J. A. Mcgeough Jan 2019

Glocal Integrity In 420 Stainless Steel By Asynchronous Laser Processing, Michael P. Sealy, Haitham Hadidi, Cody Kanger, X. L. Yan, Bai Cui, J. A. Mcgeough

Department of Mechanical and Materials Engineering: Faculty Publications

Cold working individual layers during additive manufacturing (AM) by mechanical surface treatments, such as peening, effectively “prints” an aggregate surface integrity that is referred to as a glocal (i.e., local with global implications) integrity. Printing a complex, pre-designed glocal integrity throughout the build volume is a feasible approach to improve functional performance while mitigating distortion. However, coupling peening with AM introduces new manufacturing challenges, namely thermal cancellation, whereby heat relaxes favorable residual stresses and work hardening when printing on a peened layer. Thus, this work investigates glocal integrity formation from cyclically coupling LENS® with laser peening on 420 stainless steel.


The Effect Of Cell Size And Surface Roughness On The Compressive Properties Of Abs Lattice Structures Fabricated By Fused Deposition Modeling, Leah Hope Mason Jan 2019

The Effect Of Cell Size And Surface Roughness On The Compressive Properties Of Abs Lattice Structures Fabricated By Fused Deposition Modeling, Leah Hope Mason

Masters Theses

"Postprocessing is an important step in many manufacturing methods, but it is especially important for additive manufacturing. Researchers looking to improve the surface roughness of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM) have determined that acetone smoothing not only achieves improved surface roughness but increases compressive strength as well. This could be very beneficial to lattice structures, which are known for already having an excellent strength to weight ratio. If the compressive strength of ABS lattice structures could be improved even further using acetone smoothing, it could expand the applications for plastic lattice structures and improve …


Energy Analysis For Process Parameter Prediction Of Direct Energy Deposition Metal Additive Manufacturing, Daniel John Pulscher Jan 2019

Energy Analysis For Process Parameter Prediction Of Direct Energy Deposition Metal Additive Manufacturing, Daniel John Pulscher

Graduate Research Theses & Dissertations

Metal Additive Manufacturing with the Direct Energy Deposition (DED) process allows for rapid prototyping and low-volume custom manufacturing of complex geometries at a lower cost than traditional manufacturing methods. Direct energy deposition is a complex process having many inter-related process parameters that effect the overall quality and mechanical properties of the build. When new powder feedstocks are used, calibrating these process parameters is typically done empirically in trials that can contain more than a hundred different combinations of parameters. This time-consuming process can be reduced by performing an analytical analysis on how the energy from the laser transfers into the …


Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli Jan 2019

Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli

Williams Honors College, Honors Research Projects

Worldwide incidence of bone disorders and conditions, an already prevalent problem, is expected to double by 2020 from the rate in 2013 due to factors such as higher life expectancies and lower levels of physical activity. Every year in the United States, over half a million patients receive bone defect repairs, with costs greater than $2.5 billion. Current repairs are typically done with bone grafts, which are often costly and can result in added complications in the donor surgical site. Tissue engineering, a growing field that seeks to assist and enhance tissue defect repairs through the use of synthetic materials, …


Design, Fabrication, And Characterization Of Functionally Graded Materials, Sreekar Karnati Jan 2019

Design, Fabrication, And Characterization Of Functionally Graded Materials, Sreekar Karnati

Doctoral Dissertations

“The aim of this research was to investigate the feasibility of fabricating custom designed, graded materials using Laser Metal Deposition (LMD) that will cater for functionality and unconventional repair. The ultimate goal of the project is to establish the versatility of LMD for fabricating advanced materials and tackling problems that have been conventionally difficult or in cases infeasible. In order to accomplish these goals, this research involved investigations into, the feasibility of using elemental powders as modular feedstocks, the feasibility of fabricating tailored gradients with these custom compositions, and finally leveraging the advantages of grading materials using LMD to successfully …


Remanufacturing Of Precision Metal Components Using Additive Manufacturing Technology, Xinchang Zhang Jan 2019

Remanufacturing Of Precision Metal Components Using Additive Manufacturing Technology, Xinchang Zhang

Doctoral Dissertations

"Critical metallic components such as jet engine turbine blades and casting die/mold may be damaged after servicing for a period at harsh working environments such as elevated temperature and pressure, impact with foreign objects, wear, corrosion, and fatigue. Additive manufacturing has a promising application for the refurbishment of such high-costly parts by depositing materials at the damaged zone to restore the nominal geometry. However, several issues such as pre-processing of worn parts to assure the repairability, reconstructing the repair volume to generate a repair tool path for material deposition, and inspection of repaired parts are challenging. The current research aims …


Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li Jan 2019

Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li

Doctoral Dissertations

"Ceramic On-Demand Extrusion (CODE) is a recently developed freeform extrusion fabrication process for producing dense ceramic components from single and multiple constituents. In this process, aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle to print each layer sequentially. Once one layer is printed, it is surrounded by oil to prevent undesirable water evaporation from the perimeters of the part. The oil level is regulated just below the topmost layer of the part being fabricated. Infrared radiation is then applied to uniformly and partially dry the top layer so that the yield stress of the paste increases to avoid part deformation. By repeating the above steps, the part is printed in a layer-wise fashion, followed by post-processing. Paste extrusion precision of different extrusion mechanisms was compared and analyzed, with an auger extruder determined to be the most suitable paste extruder for the CODE system. A novel fabrication system was developed based on a motion gantry, auger extruders, and peripheral devices. Sample specimens were then produced from 3 mol% yttria stabilized zirconia using this fabrication system, and their properties, including density, flexural strength, Young's modulus, Weibull modulus, fracture toughness, and hardness were measured. The results indicated that superior mechanical properties were achieved by the CODE process among all the additive manufacturing processes. Further development was made on the CODE process to fabricate ceramic components that have external/internal features such as overhangs by using fugitive support material. Finally, ceramic composites with functionally graded materials (FGMs) were fabricated by the CODE process using a dynamic mixing device"--Abstract, page iv.


Mechanical Characterization Of Anisotropic Fused Deposition Modeled Polylactic Acid Under Combined Monotonic Bending And Torsion Conditions, Aaron T. Santomauro Jan 2019

Mechanical Characterization Of Anisotropic Fused Deposition Modeled Polylactic Acid Under Combined Monotonic Bending And Torsion Conditions, Aaron T. Santomauro

Honors Undergraduate Theses

Mechanical strength of polylactic acid (PLA) is increasingly relevant with time because of its attractive mechanical properties and 3D printability. Additive manufacturing (AM) methods, such as fused deposition modeling (FDM), stereolithography (SLA), and selective laser sintering (SLS), serve a vital role in assisting designers with cheap and efficient generation of the desired components. This document presents research to investigate the anisotropic response of multi-oriented PLA subjected to multiple monotonic loading conditions. Although empirical data has previously been captured for multi-oriented PLA under tensile and compressive loading conditions, the data has yet to be applied with regard to a representative component …


Rasters Vs Contours For Thin Wall Ultem 9085 Fdm Applications, Vausman Kota Jan 2019

Rasters Vs Contours For Thin Wall Ultem 9085 Fdm Applications, Vausman Kota

Browse all Theses and Dissertations

Currently many components are additively manufactured via fused deposition modeling (FDM). However, FDM results in gaps between passes which produces a poor surface finish and porous material that is difficult to hold pressure. Commercial scale air systems require a pressure to be maintained within thin walled components with minimal post processing and clean up after fabrication. A design of experiments (DOE) was created to identify the optimal raster vs contour ratio for UTLEM 9085 CG fabricated using FDM at different build angles and wall thicknesses. A custom-built pressurized test system was developed, the leak rates were calculated and the surfaces …


Rheological Properties Of Two Stainless Steel 316l Powders For Additive Manufacturing, Haijun Gong, Xiaodong Xing, Hengfeng Gu Jan 2019

Rheological Properties Of Two Stainless Steel 316l Powders For Additive Manufacturing, Haijun Gong, Xiaodong Xing, Hengfeng Gu

Department of Manufacturing Engineering Faculty Research and Publications

This study measures the rheological properties of two stainless steel 316L powders which are used for the powder-bed-fusion based additive manufacturing process. The purpose is to evaluate the newly acquired powder in comparison with the used and recycled powder, so that both powders can be mixed with each other to supplement the powder usage. The powder rheology properties, such as dynamic property, bulk property, and shear property, are tested and compared. The results and analysis confirm the compatibility of powder mixing.