Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

The Improvement Of The Solar Air Heater Duct By Wired Ribs Utilization, Osamah Raad Skheel/Alkhafaji Sep 2019

The Improvement Of The Solar Air Heater Duct By Wired Ribs Utilization, Osamah Raad Skheel/Alkhafaji

Karbala International Journal of Modern Science

Abstract Heat transfer coefficient of the solar air heater duct (SAH) is low due increasing the thermal performance of its absorber. The present study tends to enhance the thermal characteristics of the SAH by adopting the wired ribs on the absorber under different ribs dimensions and arrangements. A rectangular duct is used to form the SAH with length L=1500mm, width w=100mm and height H=30mm. The used heat fluxes over the absorber are 1000W/m2 and 500W/m2 while the operated Reynolds number range is 708 ~ 6375. The utilized wired ribs are arranged over the absorber so as ...


All Season Heat Pipe System., Adrienne Marie Parsons Aug 2019

All Season Heat Pipe System., Adrienne Marie Parsons

Electronic Theses and Dissertations

Our energy choices impact the earth’s natural systems and climate. As this becomes increasingly important, the need for decreasing our energy usage is essential. Conventional passive solar systems can significantly reduce the heating load. Similarly, passive ambient energy systems, such as ventilation and sky radiation, can reduce cooling loads. However, the integration of passive heating and cooling systems in the same building and the benefits of actively controlling these otherwise passive systems to maximize annual energy savings has largely been unexplored. This study first evaluates the building cooling capacity of sky radiation, which was previously identified to have the ...


Insulated Solar Electric Cooker With Phase Change Thermal Storage Medium, Justin Brett Unger, Nathan Robert Christler, Matthew Weeman, Marcus Edward Strutz May 2019

Insulated Solar Electric Cooker With Phase Change Thermal Storage Medium, Justin Brett Unger, Nathan Robert Christler, Matthew Weeman, Marcus Edward Strutz

Mechanical Engineering

This final design review document outlines the senior design project carried out by a team of four mechanical engineering students at the California Polytechnic State University – San Luis Obispo under the sponsorship of Dr. Peter Schwartz of the Cal Poly Physics department. The aim of this project was to improve upon the design of previously developed Insulated Solar Electric Cookers (ISECs) by adding a thermal storage system to allow for quicker cook times and the ability to cook food at non-peak solar hours. The team’s goal was to develop a working prototype utilizing a phase change medium as the ...


Solar Thermoelectricity Via Advanced Latent Heat Storage, Michele L. Olsen, Eric S. Toberer, David S. Ginley, Philip A. Parilla, Emily L. Warren, Aaron D. Martinez, Jonathan E. Rea, Corey Lee Hardin, Christopher J. Oshman, Nathan P. Siegel Feb 2019

Solar Thermoelectricity Via Advanced Latent Heat Storage, Michele L. Olsen, Eric S. Toberer, David S. Ginley, Philip A. Parilla, Emily L. Warren, Aaron D. Martinez, Jonathan E. Rea, Corey Lee Hardin, Christopher J. Oshman, Nathan P. Siegel

Other Faculty Research and Publications

An aspect of the present disclosure is a system that includes a thermal valve having a first position and a second position, a heat transfer fluid, and an energy converter where, when in the first position, the thermal valve prevents the transfer of heat from the heat transfer fluid to the energy converter, and when in the second position, the thermal valve allows the transfer of heat from the heat transfer fluid to the energy converter, such that at least a portion of the heat transferred is converted to electricity by the energy converter.


Solar Powered Atmospheric Water Generation, Ben Conser Jan 2019

Solar Powered Atmospheric Water Generation, Ben Conser

Master’s Theses

Several atmospheric water generation (AWG) system configurations were analyzed to determine the feasibility of AWG as a method to combat water stress. In order to best combat water stress, AWG must be implemented in such a way which minimizes the energetic and monetary cost of water production. Thermodynamic and economic analyses were used to compare the performance of several AWG system configurations. Metrics such as specific energy consumption (SEC) and levelized cost of water (LCOW), which measure the energetic and monetary cost of water production respectively, were used to compare each system. Using this approach, the optimal system configuration was ...


Ares Cleaning System, Andy Sagers, John Cunningham, Peter Greig, Jack Glynn Jan 2019

Ares Cleaning System, Andy Sagers, John Cunningham, Peter Greig, Jack Glynn

Mechanical Engineering

In this Final Design Review, the team outlines the general scope of the ARES Cleaning System project and the final design direction chosen and built. This team consists of a group of four mechanical engineering students who have been tasked with designing and manufacturing an autonomous ARES cleaning system to help their sponsor, Fracsun, better track soiling losses measured at large solar arrays. They designed, conceptualized, manufactured, and tested throughout the project as they looked to create a final, functioning product. In creating this Final Design Review, they have identified how the product will perform the desired functions and what ...