Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Combined Molecular Dynamics And Phase Field Simulation Of Crystal Melt Interfacial Properties And Microstructure Evolution During Rapid Solidification Of Ti-Ni Alloys, Sepideh Kavousi Nov 2019

Combined Molecular Dynamics And Phase Field Simulation Of Crystal Melt Interfacial Properties And Microstructure Evolution During Rapid Solidification Of Ti-Ni Alloys, Sepideh Kavousi

LSU Doctoral Dissertations

Phase field method has become a popular tool to investigate the microstructure evolution during the solidification. Quantitative predictions using this method is still limited, and in this dissertation, we try to study this problem from different perspectives.

Most of the phase field models consider the solid-liquid interface to be in local equilibrium. Solidification during some manufacturing processes like selective laser melting, and electron beam additive manufacturing is rapid and far from equilibrium which can result in supersaturated solid solutions, segregation-free crystals, or metastable phases. Before obtaining any conclusions from the phase field simulations, we must know the answer for “which …


An Atomistic Approach For The Survey Of Dislocation-Grain Boundary Interactions In Fcc Nickel, Devin William Adams Aug 2019

An Atomistic Approach For The Survey Of Dislocation-Grain Boundary Interactions In Fcc Nickel, Devin William Adams

Theses and Dissertations

It is well known that grain boundaries (GBs) have a strong influence on mechanical properties of polycrystalline materials. Not as well-known is how different GBs interact with dislocations to influence dislocation movement. This work presents a molecular dynamics study of 33 different FCC Ni bicrystals subjected to mechanical loading to induce incident dislocation-GB interactions. The resulting simulations are analyzed to determine properties of the interaction that affect the likelihood of transmission of the dislocation through the GB in an effort to better inform mesoscale models of dislocation movement within polycrystals. It is found that the ability to predict the slip …


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Department of Chemistry: Dissertations, Theses, and Student Research

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get …


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


Shock Compaction Of Graphene Doped Yttria Stabilized Zirconia: An Experimental And Computational Study, Christopher Rueben Johnson Apr 2019

Shock Compaction Of Graphene Doped Yttria Stabilized Zirconia: An Experimental And Computational Study, Christopher Rueben Johnson

Master's Theses (2009 -)

Yttria stabilized zirconia (YSZ) is a broadly used ceramic due to its impeccable hardness and thermal stability. Limitations of the material, however, subsist within its fracture toughness. Literature indicates that shock consolidation may enable production of composite YSZ and graphene mixtures with improved fracture toughness and other material properties while maintaining the material’s nanostructure dimensionality. Therefore, investigation of the compaction phenomena at non-equilibrium states will provide informative results to be used in the fabrication of bulk graphene-YSZ composites. Computational molecular dynamics (MD) simulations and impact experiments are conducted to explore and characterize the dynamic response of the YSZ variants. Molecular …


Interactions Between Dislocations And Three-Dimensional Annealing Twins In Face Centered Cubic Metals, Yanxiang Liang, Xiaofang Yang, Mingyu Gong, Guisen Liu, Qing Liu, Jian Wang Mar 2019

Interactions Between Dislocations And Three-Dimensional Annealing Twins In Face Centered Cubic Metals, Yanxiang Liang, Xiaofang Yang, Mingyu Gong, Guisen Liu, Qing Liu, Jian Wang

Department of Mechanical and Materials Engineering: Faculty Publications

Annealing twins often form in metals with a face centered cubic structure during thermal and mechanical processing. Here, we conducted molecular dynamic (MD) simulations for copper and aluminum to study the interaction processes between {1 1 1}1/2 <1 1 0> dislocations and a three-dimensional annealing twin. Twin boundaries are characterized with Σ3{1 1 1} coherent twin boundaries (CTBs) and Σ3{1 1 2} incoherent twin boundaries (ITBs). MD results revealed that dislocation-ITB interactions affect slip transmission for a dislocation crossing CTBs, facilitating the nucleation of Lomer dislocation.


Direct Polymer Grafting As A Method Of Maintaining The Mechanical Properties Of Cellulose Nanocrystals In The Presence Of Moisture, Mary Elizabeth Breen-Lyles Jan 2019

Direct Polymer Grafting As A Method Of Maintaining The Mechanical Properties Of Cellulose Nanocrystals In The Presence Of Moisture, Mary Elizabeth Breen-Lyles

Graduate Research Theses & Dissertations

Cellulose nanocrystals (CNCs) are a distinctive nanomaterial derived from cellulose, the most abundant natural polymer on Earth, and the primary reinforcing structural component of cellulose fibrils found within the plant cell wall. These nanocrystals exhibit mechanical properties comparable to synthetic aramid fibers but are advantageous as they are biodegradable, renewable, and can be produced sustainably as they are predominantly extracted from naturally occurring cellulosic materials. These qualities make it a sustainable, highly renewable and environmentally friendly material to be used in place of synthetic materials in a variety of applications. With their high surface area to volume ratio, low level …


Effect Of Turbostratic Orientations And Confined Fluid On Mechanical Strength Of Bi-Layer Graphene: A Molecular Dynamics Study, Nil B. Dhankecha Jan 2019

Effect Of Turbostratic Orientations And Confined Fluid On Mechanical Strength Of Bi-Layer Graphene: A Molecular Dynamics Study, Nil B. Dhankecha

Theses

The rise of graphene as a reinforcement material in the last decade has been exponential owing to its superior mechanical properties. This one atom thick 2D material is applicable in many industries related to nanomechanical, nanoelectronics and optical devices. Despite its strength and superior properties, single-layer graphene tends to be unstable in a free-standing form. This led to active use of bi-layer and multilayered graphene in many of the above-stated applications. Though properties of single-layer graphene have been extensively investigated both computationally as well as experimentally for over a decade, bilayer graphene and its turbostratic form are still under research. …