Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling Dec 2019

Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling

Mechanical Engineering

The critical radius of insulation is a counterintuitive concept within the study of heat transfer. The theory states that adding insulation to a cylindrical or spherical object will increase the rate of heat loss rather than decrease it, if the radius (thickness) of the insulation is at its “critical” value. The Critical Radius of Insulation Senior Project is designed to demonstrate this phenomenon to Heat Transfer students via a portable apparatus. The concept will be demonstrated with a cylindrical object which is heated by way of a separate voltage source. Thermocouples will display the temperature of the cylinder while insulation ...


Enhanced Heat Transfer In Spray Cooling Through Surface Modifications: An Experimental And Computational Study, Azzam Saadi Salman Oct 2019

Enhanced Heat Transfer In Spray Cooling Through Surface Modifications: An Experimental And Computational Study, Azzam Saadi Salman

Theses and Dissertations

Today, dissipating high heat flux safely is one of the greatest challenges for thermal engineers in thermal management systems, and it becomes a critical barrier to technological developments for many engineering applications. Due to technological advances and aggressive micro-miniaturization of electronic components, the surface area of most devices has shrunk while the computational power increased exponentially. Therefore, the amount of heat dissipated from surfaces has increased significantly. Numerous cooling techniques have been introduced to replace the traditional air cooling systems and to maintain the efficiency and reliability of electronic components. Microelectronics work efficiently and safely at surface temperatures of < 100 ℃ and 125 ℃ for general and defense applications, respectively. One of the proposed alternative schemes is spray cooling, which is considered one of the most advanced cooling methods. It is used for high and ultra-high heat flux dissipation, as it can dissipate 150-200 W/cm2 while maintaining the surface temperature within this range. Also, spray cooling removes a large amount of energy at a lower liquid flow rate compared to other cooling techniques, such as jet impingement and microchannel heat sink. The thermal performance of spray cooling systems can be enhanced either actively or passively. Active enhancement is a very efficient technique; however, it adds more pumping power. The present work focuses on three main objectives: evaluating and analyzing spray cooling performance, developing a three-dimensional numerical multi-phase model for heat transfer process in spray cooling and enhancing the thermal performance of spray cooling passively.

First ...


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Student Research Projects, Dissertations, and Theses - Chemistry Department

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get ...


A Model For Condensation Heat Transfer In Hydrophobic-­Hydrophilic Surfaces, Abdulwahab E. Alhashem Jul 2019

A Model For Condensation Heat Transfer In Hydrophobic-­Hydrophilic Surfaces, Abdulwahab E. Alhashem

Theses and Dissertations

The primary focus of this research is to provide a validated model for a comprehensive understanding of hydrophobic-­‐hydrophilic condensation on patterned-­‐ hybrid surface. Establishing the model requires the modeling of fully dropwise condensation (DWC) before applying modifications to evaluate heat transfer performance of patterned-­‐hybrid condensation surface.

The model for fully DWC consists of defining expressions for heat transfer through a single drop, maximum radius of the drop and drop-­‐size distribution which all are primarily based on the work in the literature. In this work the author utilized a proposed modified version of the simulation for drop-­‐size ...


Experimental Study On Transient Behavior Of Water And Nanofluid In Multiport Slab Minichannel Heat Exchangers, Shahram Fotowat Feb 2019

Experimental Study On Transient Behavior Of Water And Nanofluid In Multiport Slab Minichannel Heat Exchangers, Shahram Fotowat

Electronic Theses and Dissertations

Heat exchangers are essential components of many systems and their use is extended to include various industrial, chemical, and automotive applications. A dynamic response study of a heat exchanger is essential for better representation of its design, selection, and analysis as it operates in conjunction with other process equipment. This study aims to experimentally investigate the transient performance of compact heat exchangers. A wide-range well prepared experimental setup is designed and assembled to examine the transient behavior of various types of cross-flow liquid to air heat exchangers. This set up is capable of stepping up or down the temperatures and ...


Parallelized Particle Swarm Optimization To Estimate The Heat Transfer Coefficients Of Palm Oil, Canola Oil, Conventional, And Accelerated Petroleum Oil Quenchants, Zoltán Fried, Imre Felde, Rosa L. Simencio Otero, Jônatas M. Viscaino, George E. Totten, Lauralice Canale Feb 2019

Parallelized Particle Swarm Optimization To Estimate The Heat Transfer Coefficients Of Palm Oil, Canola Oil, Conventional, And Accelerated Petroleum Oil Quenchants, Zoltán Fried, Imre Felde, Rosa L. Simencio Otero, Jônatas M. Viscaino, George E. Totten, Lauralice Canale

Mechanical and Materials Engineering Faculty Publications and Presentations

An inverse solver for the estimation of the temporal-spatial heat transfer coefficients (HTC), without using prior information of the thermal boundary conditions, was used for immersion quenching into palm oil, canola oil, and two commercial petroleum oil quenchants. The particle swarm optimization (PSO) method was used on near-surface temperature-time cooling curve data obtained with the so-called Tensi multithermocouple, and a 12.5 by 45 mm Inconel 600 probe. The fitness function to be minimized by a PSO approach is defined by the deviation of the measured and calculated cooling curves. The PSO algorithm was parallelized and implemented on a graphics ...


Influence Of Micro-Structured Superhydrophobic Surfaces On Nucleation And Natural Convection In A Heated Pool, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Feb 2019

Influence Of Micro-Structured Superhydrophobic Surfaces On Nucleation And Natural Convection In A Heated Pool, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This word experimentally explores sub-boiling pool nucleation on micro-structured superhydrophobic surfaces. All surfaces tested were submerged in a 20 mm deep pool of water and heated from below to maintain a constant surface temperature, while the side walls of the pool were insulated, and the top was covered. Three thermocouples positioned in the pool obtain the average pool temperature. A heat flux sensor is placed directly beneath the surface to measure the heat flux supplied to the pool. Free convection heat transfer coefficients are obtained for the sub-boiling temperature range of 40 – 90 ºC. Six surface types are studied: smooth ...


Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma Jan 2019

Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma

LSU Doctoral Dissertations

Conventional fuel testing device-CFR engine requires large quantities of fuels, which makes it unsuitable for research of small samples of fuels. This current study seeks to address this limitation by using an externally heated microcombustor as an alternative fuel testing device. Mainly three combustion behaviors have been observed inside a microcombustor: strong flames at higher flow rates, Flames with Repetitive Extinction and Ignition (FREI) at intermediate flow rates, and weak flames at marginal flow rates. In previous studies, weak combustion behavior has been proven suitable to study fuel properties from small samples of fuels. Microcombustor experiments typically rely on flame ...


Numerical Study On The Dynamic Process Of Single Plume Flow In Thermal Convection With Polymers, Jian-Ping Cheng, Wei-Hua Cai, Hong-Na Zhang, Feng-Chen Li, Lian Shen, Shi-Zhi Qian Jan 2019

Numerical Study On The Dynamic Process Of Single Plume Flow In Thermal Convection With Polymers, Jian-Ping Cheng, Wei-Hua Cai, Hong-Na Zhang, Feng-Chen Li, Lian Shen, Shi-Zhi Qian

Mechanical & Aerospace Engineering Faculty Publications

A direct numerical simulation of single plume flow in thermal convection with polymers was carried out in a domain with 1:3 as the width to height ratio. The heat transport ability is weakened by adding polymers within the here-investigated governing parameter range. However, it is promoted when the maximum polymer extension L is increased. The distribution of vertical velocity and temperature indicates that the plume in the polymer solution case is speeded up and widens bigger as compared to that in the Newtonian fluid case. Inside the plume, polymer chains tend to release energy at the position where the ...