Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Entire DC Network

On The Fuel Spray Applications Of Multi-Phase Eulerian Cfd Techniques, Gabriel Lev Jacobsohn Oct 2019

On The Fuel Spray Applications Of Multi-Phase Eulerian Cfd Techniques, Gabriel Lev Jacobsohn

Masters Theses

Eulerian-Eulerian Computational Fluid Dynamics (CFD) techniques continue to show promise for characterizing the internal flow and near-field spray for various fuel injection systems. These regions are difficult to observe experimentally, and simulations of such regions are limited by computational expense or reliance on empiricism using other methods. The physics governing spray atomization are first introduced. Impinging jet sprays and Gasoline Direct Injection (GDI) are selected as applications, and modern computational/experimental approaches to their study are reviewed. Two in-house CFD solvers are described and subsequently applied in several case studies. Accurate prediction of the liquid distribution in a like-doublet impinging jet …


A Cfd Study Of Steady Fully Developed Laminar Flow Through A 90-Degree Bend Pipe With A Square Cross-Sectional Area, Subodh Sushant Toraskar Oct 2019

A Cfd Study Of Steady Fully Developed Laminar Flow Through A 90-Degree Bend Pipe With A Square Cross-Sectional Area, Subodh Sushant Toraskar

Mechanical & Aerospace Engineering Theses & Dissertations

Fluid flow through a closed curved conduit has always been a topic of extensive research, as it has many practical and industrial applications. The flow is generally characterized by a presence of secondary flow, vortical motions and pressure losses for different flow regimes. These observed irregularities may positively or negatively impact the flow. They are beneficial for cases where mixing of fluids is required, usually observed for multiphase flow regimes or detrimental for cases involving particles in the fluid. There are also instances where a particle-laden fluid transported through the curved pipe was directly related to corrosion- erosion related problems. …


Unsupervised-Learning Assisted Artificial Neural Network For Optimization, Varun Kote Jul 2019

Unsupervised-Learning Assisted Artificial Neural Network For Optimization, Varun Kote

Mechanical & Aerospace Engineering Theses & Dissertations

Innovations in computer technology made way for Computational Fluid Dynamics (CFD) into engineering, which supported the development of new designs by reducing the cost and time by lowering the dependency on experimentation. There is a further need to make the process of development more efficient. One such technology is Artificial Intelligence. In this thesis, we explore the application of Artificial Intelligence (AI) in CFD and how it can improve the process of development.

AI is used as a buzz word for the mechanism which can learn by itself and make the decision accordingly. Machine learning (ML) is a subset of …


Toward A Fast And Accurate Modeling Strategy For Thermal Management In Air-Cooled Data Centers, Long Tran Bao Phan Jun 2019

Toward A Fast And Accurate Modeling Strategy For Thermal Management In Air-Cooled Data Centers, Long Tran Bao Phan

FIU Electronic Theses and Dissertations

Computational fluid dynamics (CFD) has become a popular tool compared to experimental measurement for thermal management in data centers. However, it is very time-consuming and resource-intensive when used to model large-scale data centers, and may not be ready for real-time thermal monitoring. In this thesis, the two main goals are first to develop rapid flow simulation to reduce the computing time while maintaining good accuracy, and second, to develop a whole building energy simulation (BES) strategy for data center modeling. To achieve this end, hybrid modeling and model training methodologies are investigated for rapid flow simulation, and a multi-zone model …


Transient Flow Analysis Of A Closing Blowout Preventer Using Computational Fluid Dynamics (Cfd), Daniel Barreca Jun 2019

Transient Flow Analysis Of A Closing Blowout Preventer Using Computational Fluid Dynamics (Cfd), Daniel Barreca

LSU Master's Theses

Reliability of blowout preventers (BOPs) is crucial for drilling and production operations. Erosion of BOP components and hydrodynamic forces on rams may cause failure of BOP elements to seal the well. Transient computational fluid dynamics (CFD) simulations of fluids within the wellbore and BOP offer quantitative and qualitative data related to this reliability during the closure of various BOP components. Since limited research has been published in transient CFD simulations of closing BOPs, this thesis discusses challenges and solutions to simulating closing blowout preventers. Single component fluids are simulated through several BOP geometries such as annular preventers, pipe rams, and …


Investigation Of Performance And Cavitation Treatment In A Kaplan Hydro Turbine, Muhannad R. Al-Haddad May 2019

Investigation Of Performance And Cavitation Treatment In A Kaplan Hydro Turbine, Muhannad R. Al-Haddad

Theses and Dissertations

Cavitation is a phenomenon that occurs in various turbomachinery applications causing drawbacks on the. Some of these downsides are damaging the components of the system, generating noise and vibration, and loss of the turbine efficiency over time. Thus, it is imperative to address issue of cavitation to increase the life span of the equipment in addition to improve the system performance. This thesis introduces a method used to mitigate the cavitation phenomenon in a 3-inch Kaplan hydro turbine via injecting air at the leading edge of the rotor blades. The study is based on modeling the turbine using Computational Fluid …


Investigation Of Performance And Cavitation Treatment In A Kaplan Hydro Turbine, Muhannad R. Al-Haddad May 2019

Investigation Of Performance And Cavitation Treatment In A Kaplan Hydro Turbine, Muhannad R. Al-Haddad

Theses and Dissertations

Cavitation is a phenomenon that occurs in various turbomachinery applications causing drawbacks on the. Some of these downsides are damaging the components of the system, generating noise and vibration, and loss of the turbine efficiency over time. Thus, it is imperative to address issue of cavitation to increase the life span of the equipment in addition to improve the system performance. This thesis introduces a method used to mitigate the cavitation phenomenon in a 3-inch Kaplan hydro turbine via injecting air at the leading edge of the rotor blades. The study is based on modeling the turbine using Computational Fluid …


Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen May 2019

Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen

Electronic Theses and Dissertations

When small drops coalesce on a superhydrophobic surface, the merged drop can jump away from the surface due to the surface energy released during the coalescence. This self-propelled behavior has been observed on various superhydrophobic surfaces and has potential applications in areas related to the heat and mass transfer, such as heat exchangers, anti-icing and anti-frost devices, thermal management and water harvesting. The jumping velocity model was obtained based on published experimental data and the balance of various energy terms described in previous studies. However, the self-propelled mechanism is still not fully understood. In this study, the self-propelled droplet phenomenon …


Thermal Gradient Characterization And Control In Micro-Fabricated Gas Chromatography Systems, Austin Richard Foster May 2019

Thermal Gradient Characterization And Control In Micro-Fabricated Gas Chromatography Systems, Austin Richard Foster

Theses and Dissertations

In order to make gas chromatography (GC) more widely accessible, considerable effort has been made in developing miniaturized GC systems. Thermal gradient gas chromatograpy (TGGC), one of the heating methods used in GC, has recieved attention over the years due to it's ability to enhance analyte focusing. The present work seeks to develop high performance miniaturized GC systems by combining miniaturized GC technology with thermal gradient control methods, creating miniaturized thermal gradient gas chromatography (µTGGC) systems. To aid in this development a thermal control system was developed and shown to successfully control various µTGGC systems. DAQ functionality was also included …


Cavitation Number As A Function Of Disk Cavitator Radius: A Numerical Analysis Of Natural Supercavitation, Reid Prichard Apr 2019

Cavitation Number As A Function Of Disk Cavitator Radius: A Numerical Analysis Of Natural Supercavitation, Reid Prichard

Senior Honors Theses

Due to the greater viscosity and density of water compared to air, the maximum speed of underwater travel is severely limited compared to other methods of transportation. However, a technology called supercavitation – which uses a disk-shaped cavitator to envelop a vehicle in a bubble of steam – promises to greatly decrease skin friction drag. While a large cavitator enables the occurrence of supercavitation at low velocities, it adds substantial unnecessary drag at higher speeds. Based on CFD results, a relationship between cavitator diameter and cavitation number is developed, and it is substituted into an existing equation relating drag coefficient …


Cfd Study Of Aerodynamic Drag Reduction Tool Of A Generic Sports Utility Vehicle (Suv), Samira Ishrat Jahan Apr 2019

Cfd Study Of Aerodynamic Drag Reduction Tool Of A Generic Sports Utility Vehicle (Suv), Samira Ishrat Jahan

Masters Theses

The Sports Utility Vehicle (SUV) has been a popular automobile choice in North America for over 50 years due to its seating and hauling versatility and good towing capacity. This widespread popularity has resulted in manufacturers pushing for increased horsepower and cabin size. Unfortunately, the limiting factor has been fuel economy which is governed by the vehicle aerodynamics. A reduction in aerodynamic drag can result in better fuel economy. The goal of this study is to reduce the aerodynamic drag of a generic SUV and the efficient application of drag reduction devices to control flow separation. An initial study has …


Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar Jan 2019

Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar

Mechanical Engineering ETDs

The addition of GridPro semi-structured, automated generation of grids for complex moving boundaries for combustion engine applications and the Menter Shear Stress Turbulent Transfer (SST) model are being developed by Los Alamos National Laboratory. The software is called Fast, Easy, Accurate, and Robust Continuum Engineering (FEARCE). In addition to improving the time and effort required to build complex grid geometry for turbulent reactive multi-phase flow in internal combustion engines, the SST turbulence model has been programmed into the Predictor Corrector Fractional-Step (PCS) Finite Element Method (FEM) for reactive flow and turbulent incompressible flow regime validation is performed. The Reynolds-Averaged Navier-Stokes …


Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma Jan 2019

Ignition And Extinction Behavior Of Fuels In A Microcombustor, Pawan Sharma

LSU Doctoral Dissertations

Conventional fuel testing device-CFR engine requires large quantities of fuels, which makes it unsuitable for research of small samples of fuels. This current study seeks to address this limitation by using an externally heated microcombustor as an alternative fuel testing device. Mainly three combustion behaviors have been observed inside a microcombustor: strong flames at higher flow rates, Flames with Repetitive Extinction and Ignition (FREI) at intermediate flow rates, and weak flames at marginal flow rates. In previous studies, weak combustion behavior has been proven suitable to study fuel properties from small samples of fuels. Microcombustor experiments typically rely on flame …


Numerical Simulation For The Hydrodynamic Performance Of Hydropower Turbine Near Free Surface, Zeda Yin Jan 2019

Numerical Simulation For The Hydrodynamic Performance Of Hydropower Turbine Near Free Surface, Zeda Yin

Theses, Dissertations and Capstones

The performance of hydropower turbine in shallow water can be affected by the presence of free surface. Therefore, it is of great interest to investigate the influence of free surface on hydropower turbine performance through computational simulations. For a better understanding of flow field around hydropower turbine operating in shallow water, it is important to analyze the flow over a single hydrofoil beneath free surface first. Therefore, as the first part of this thesis, the Computational Fluid Dynamics (CFD) methodology was used for numerical simulation of 2D unsteady incompressible viscous flow over a hydrofoil under the free surface. The computation …


Computational Study Of Flow Interactions Over A Close Coupled Canard-Wing On Fighter, Setyawan Bekti Wibowo, Sutrisno Sutrisno, Tri Agung Rohmat Jan 2019

Computational Study Of Flow Interactions Over A Close Coupled Canard-Wing On Fighter, Setyawan Bekti Wibowo, Sutrisno Sutrisno, Tri Agung Rohmat

International Journal of Aviation, Aeronautics, and Aerospace

There have been many attempts to improve the flying performance of a fighter. By modifying the flow that occurs along the fuselage is expected to improve the performance of the aircraft. One of the indicators of combat aircraft performance is the ability to perform maneuver movement. Adding a canard as forewing on the fighter wing configuration is considered capable of raising the ability in maneuver movement. The use of canard-delta pairs will affect the performance and aerodynamic characteristics of the plane. Wings and canards with delta configuration will make the rolled-up vortex as a lifting force producer on the aircraft. …


Blade Design And Analysis Of Horizontal-Axis Wind Turbine: Cfd And Experimental Investigation Of Blades Design, Relwinde Fabrice Zongo Jan 2019

Blade Design And Analysis Of Horizontal-Axis Wind Turbine: Cfd And Experimental Investigation Of Blades Design, Relwinde Fabrice Zongo

Electronic Theses and Dissertations

The present thesis focuses on the investigations of the computational fluid dynamics analysis and the experimental study of small scales Horizontal Axis Wind Turbine (HAWT) blades. The initial steps are taken; in the process of this research were the selection of the airfoil type to be used in each blade design and the creation of a blade design with high efficiency operating in a low wind speed zone. For the mentioned blade design process, the following airfoils were selected respectively NACA 0010, NACA 0012, NACA 1412, NACA 2412, NACA 2414, NACA 4412 and NACA 6412. This selection intends to provide …


Employing 2-D Cfd & Lrb Model Around Trees To Improve Vawt Placement, David Chukwuebuka Bassey Jan 2019

Employing 2-D Cfd & Lrb Model Around Trees To Improve Vawt Placement, David Chukwuebuka Bassey

All Graduate Theses, Dissertations, and Other Capstone Projects

In the placement of vertical axis wind turbines, trees are a constant presence in the vicinity. They are found to grow at different height and shape configurations. And in areas such as the Minnesota State University, Mankato (MNSU) campus, they serve as blockage to airflow; limiting the efficiency of installed turbines. This work sets the precedent for the validation of vegetative numerical models created for the Xcel Energy Research Development Fund (RDF) project.

Using two-dimensional (2-D) numerical simulations of porous cylinders placed in a rectangular medium of air, insight into the flow profile and distribution in the leeward side of …


Aerodynamics Of Fan Blade Blending, Clint J. Knape Jan 2019

Aerodynamics Of Fan Blade Blending, Clint J. Knape

Browse all Theses and Dissertations

Blending is a method of fan and compressor blade repair. The goal of the blending process is to remove stress concentration points such as cracks and nicks along the leading, trailing, or tip edges of the blade. The stressed areas are typically removed by grinding or cropping away the surrounding material. For integrally bladed rotor (IBR) disks, repairing a damaged blade is much more economical than replacing the entire disk. However, the change in shape of the blade will change the local aerodynamics and result in mistuning, both structurally and aerodynamically. In a worst case scenario, the change in the …


Using Cfd To Improve Off-Design Throughflow Analysis, Troy J. Lanchman Jan 2019

Using Cfd To Improve Off-Design Throughflow Analysis, Troy J. Lanchman

Browse all Theses and Dissertations

In turbomachinery design, complex internal flows give rise to significant losses and blockage whose effects are difficult to properly analyze without detailed computational fluid dynamics (CFD) methods or experiments. In a typical design method, CFD is used in conjunction with simpler throughflow or cascade codes to hasten the process. However, the lesser physical accuracy of the design codes demands the inclusion of models to improve the accuracy of the throughflow codes. This thesis aims to use CFD data to generate improved loss and blockage models for a 2D compressor throughflow code by matching throughflow data to CFD data using optimizations. …