Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Capillary Penetration Method For Measuring Wetting Properties Of Carbon Ionomer Films For Proton Exchange Membrane Fuel Cell (Pemfc) Applications, Sofyane Abbou, Kazuya Tajiri, K. T. Alofari, Ezequiel F. Medici, A. T. Haug, Jeffrey S. Allen Apr 2019

Capillary Penetration Method For Measuring Wetting Properties Of Carbon Ionomer Films For Proton Exchange Membrane Fuel Cell (Pemfc) Applications, Sofyane Abbou, Kazuya Tajiri, K. T. Alofari, Ezequiel F. Medici, A. T. Haug, Jeffrey S. Allen

Michigan Tech Publications

In this work, capillary rise experiments were performed to assess the wetting properties of carbon-ionomer (CI) films. The samples were attached to a micro-balance and then immersed into liquid water to (i) measure the mass gain from the liquid uptake and (ii) estimate the (external) contact angle to water (typical value around 140°). The results showed that drying the CI films under low vacuum significantly impacted the CI film wettability. The influence of the ionomer content on the CI films’ wettability was investigated with various ionomer to carbon (I/C) ratios: 0.8, 1.0, 1.2 and 1.4 ...


Simulation Of Droplet Impacting A Square Solid Obstacle In Microchannel With Different Wettability By Using High Density Ratio Pseudopotential Multiplerelaxation- Time (Mrt) Lattice Boltzmann Method (Lbm), Wandong Zhao, Ying Zhang, Wenqiang Shang, Ben Xu, Shuisheng Jiang Jan 2019

Simulation Of Droplet Impacting A Square Solid Obstacle In Microchannel With Different Wettability By Using High Density Ratio Pseudopotential Multiplerelaxation- Time (Mrt) Lattice Boltzmann Method (Lbm), Wandong Zhao, Ying Zhang, Wenqiang Shang, Ben Xu, Shuisheng Jiang

Mechanical Engineering Faculty Publications and Presentations

In this paper, a pseudopotential high density ratio (DR) lattice Boltzmann Model was developed by incorporating multi-relaxation-time (MRT) collision matrix, large DR external force term, surface tension adjustment external force term and solid-liquid pseudopotential force. It was found that the improved model can precisely capture the two-phase interface at high DR. Besides, the effects of initial Reynolds number, Weber number, solid wall contact angle (CA), ratio of obstacle size to droplet diameter ( 1 χ ), ratio of channel width to droplet diameter ( 2 χ ) on the deformation and breakup of droplet when impacting on a square obstacle were investigated. The results ...