Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Estimation Of Gait Kinematics And Kinetics From Inertial Sensor Data Using Optimal Control Of Musculoskeletal Models, Eva Dorschky, Marlies Nitschke, Ann-Kristin Seifer, Antonie J. Van Den Bogert, Bjoern M. Eskofier Oct 2019

Estimation Of Gait Kinematics And Kinetics From Inertial Sensor Data Using Optimal Control Of Musculoskeletal Models, Eva Dorschky, Marlies Nitschke, Ann-Kristin Seifer, Antonie J. Van Den Bogert, Bjoern M. Eskofier

Mechanical Engineering Faculty Publications

Inertial sensing enables field studies of human movement and ambulant assessment of patients. However, the challenge is to obtain a comprehensive analysis from low-quality data and sparse measurements. In this paper, we present a method to estimate gait kinematics and kinetics directly from raw inertial sensor data performing a single dynamic optimization. We formulated an optimal control problem to track accelerometer and gyroscope data with a planar musculoskeletal model. In addition, we minimized muscular effort to ensure a unique solution and to prevent the model from tracking noisy measurements too closely. For evaluation, we recorded data of ten subjects walking …


Design And Analysis Of Novel Actuation Mechanism With Controllable Stiffness, Erivelton Gualter Dos Santos, Hanz Richter Feb 2019

Design And Analysis Of Novel Actuation Mechanism With Controllable Stiffness, Erivelton Gualter Dos Santos, Hanz Richter

Mechanical Engineering Faculty Publications

Actuators intended for human–machine interaction systems are usually designed to be mechanically compliant. Conventional actuators are not suitable for this purpose due to typically high stiffness. Advanced powered prosthetic and orthotic devices can vary their stiffness during a motion cycle and are power-efficient. This paper proposes a novel actuator design that modulates stiffness by means of a flexible beam. A motorized drive system varies the active length of the cantilever beam, thus achieving stiffness modulation. New large deflection formulation for cantilever beams with rolling contact constraints is used to determine the moment produced by the actuator. To validate the proposed …


Metabolic Cost Calculations Of Gait Using Musculoskeletal Energy Models, A Comparison Study, Anne D. Koelewijn, Dieter Heinrich, Antonie J. Van Den Bogert Jan 2019

Metabolic Cost Calculations Of Gait Using Musculoskeletal Energy Models, A Comparison Study, Anne D. Koelewijn, Dieter Heinrich, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

This paper compares predictions of metabolic energy expenditure in gait using seven metabolic energy expenditure models to assess their correlation with experimental data. Ground reaction forces, marker data, and pulmonary gas exchange data were recorded for six walking trials at combinations of two speeds, 0.8 m/s and 1.3 m/s, and three inclines, -8% (downhill), level, and 8% (uphill). The metabolic cost, calculated with the metabolic energy models was compared to the metabolic cost from the pulmonary gas exchange rates. A repeated measures correlation showed that all models correlated well with experimental data, with correlations of at least 0.9. The model …


State Estimation For An Agonistic‐Antagonistic Muscle System, Thang Tien Nguyen, Holly Warner, Hung La, Hanieh Mohammadi, Daniel J. Simon, Hanz Richter Jan 2019

State Estimation For An Agonistic‐Antagonistic Muscle System, Thang Tien Nguyen, Holly Warner, Hung La, Hanieh Mohammadi, Daniel J. Simon, Hanz Richter

Electrical and Computer Engineering Faculty Publications

Research on assistive technology, rehabilitation, and prosthetics requires the understanding of human machine interaction, in which human muscular properties play a pivotal role. This paper studies a nonlinear agonistic‐antagonistic muscle system based on the Hill muscle model. To investigate the characteristics of the muscle model, the problem of estimating the state variables and activation signals of the dual muscle system is considered. In this work, parameter uncertainty and unknown inputs are taken into account for the estimation problem. Three observers are presented: a high gain observer, a sliding mode observer, and an adaptive sliding mode observer. Theoretical analysis shows the …