Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Entire DC Network

Stainless-Steel Column For Robust High Temperature Microchip Gas Chromatography, Abhijit Ghosh, Austin R. Foster, Jacob C. Johnson, Carlos R. Vilorio, Luke T. Tolley, Brian D. Iverson, Aaron R. Hawkins, H. Dennis Tolley, Milton L. Lee Dec 2019

Stainless-Steel Column For Robust High Temperature Microchip Gas Chromatography, Abhijit Ghosh, Austin R. Foster, Jacob C. Johnson, Carlos R. Vilorio, Luke T. Tolley, Brian D. Iverson, Aaron R. Hawkins, H. Dennis Tolley, Milton L. Lee

Faculty Publications

This paper reports the first results of a robust, high performance, stainless-steel microchip gas chromatography (GC) column that is capable of analyzing complex real world mixtures as well as operating at very high temperatures. Using a serpentine design, a 10 m column with an approximately semicircular cross section with a 52 µm hydraulic diameter (Dh) was produced in a 17 cm x 6.3 cm x 0.1 cm rectangular steel chip. The channels were produced using a multilayer chemical etch and diffusion bonding process, and metal nuts were brazed onto the inlet and outlet ports allowing for column interfacing …


Average Speech Directivity, Samuel D. Bellows, Claire M. Pincock, Jennifer K. Whiting, Timothy W. Leishman Nov 2019

Average Speech Directivity, Samuel D. Bellows, Claire M. Pincock, Jennifer K. Whiting, Timothy W. Leishman

Directivity

Speech directivity describes the angular dependence of acoustic radiation from a talker’s mouth and nostrils and diffraction about his or her body and chair (if seated). It is an essential physical aspect of communication affecting sounds and signals in acoustical environments, audio, and telecommunication systems. Because high-resolution, spherically comprehensive measurements of live, phonetically balanced speech have been unavailable in the past, the authors have undertaken research to produce and share such data for simulations of acoustical environments, optimizations of microphone placements, speech studies, and other applications. The measurements included three male and three female talkers who repeated phonetically balanced passages …


Wind Farm Layout Optimization With Loads Considerations, Andrew P. J. Stanley, Jennifer King, Andrew Ning Oct 2019

Wind Farm Layout Optimization With Loads Considerations, Andrew P. J. Stanley, Jennifer King, Andrew Ning

Faculty Publications

The objective of this paper is to improve the annual energy production of a wind farm by optimizing the layout of a wind farm, while considering fatigue loads on turbines. In this paper, the loads are estimated using the edgewise bending moment computed using CCBlade, a steady-state blade element momentum code. The edgewise bending moment is then used to calculate fatigue damage using Miner’s rule. The fatigue damage is used to constrain the layout optimization problem. We show that our method can predict blade root damage with similar trends to damage calculated with other methods, such as a complex, computationally …


Adhesion Testing Of Printed Inks While Varying The Surface Treatment Of Polymer Substrates, Clayton Neff, Edwin Elston, Amanda Schrand, Nathan B. Crane Sep 2019

Adhesion Testing Of Printed Inks While Varying The Surface Treatment Of Polymer Substrates, Clayton Neff, Edwin Elston, Amanda Schrand, Nathan B. Crane

Faculty Publications

Additive manufacturing with conductive materials enables new approaches to printed electronics that are unachievable by standard electronics manufacturing processes. In particular, electronics can be embedded directly into structural components in nearly arbitrary 3D space. While these methods incorporate many of the same materials, the new processing methods require standard test methods to compare materials, processing conditions, and determine design limits. This work demonstrates a test method to quantitatively measure the adhesion failure of printed inks deposited on a substrate without changing the ink printing conditions. The proposed method is an adaption of single lap shear testing in which the lap …


Mechanical And Temperature Resilience Of Multi-Material Systems For Printed Electronics Packaging, Clayton Neff, Justin Nussbaum, Chris Gardiner, Nathan B. Crane, James L. Zunino, Mike Newton Sep 2019

Mechanical And Temperature Resilience Of Multi-Material Systems For Printed Electronics Packaging, Clayton Neff, Justin Nussbaum, Chris Gardiner, Nathan B. Crane, James L. Zunino, Mike Newton

Faculty Publications

In this work, two AM technologies were utilized to compare the effectiveness of fabricating a simple electronic device with a conductive trace and hollow cylinder representative of ‘printed packaging’ that would survive harsh environmental conditions. The printed packaging cylinder delineates printed potting for electronics packaging. An nScrypt direct write (DW) system was the primary manufacturing system but a developing technology—coined large area projection sintering (LAPS)—manufactured a subset of samples for comparison. The tests follow Military Standard (MIL STD) 883K and include resiliency evaluation for die shear strength, temperature cycling, thermal shock, and high G loading by mechanical shock. Results indicate …


Relative Navigation Of Fixed-Wing Aircraft In Gps-Denied Environments, Gary J. Ellingson, Kevin M. Brink, Timothy Mclain Aug 2019

Relative Navigation Of Fixed-Wing Aircraft In Gps-Denied Environments, Gary J. Ellingson, Kevin M. Brink, Timothy Mclain

Faculty Publications

The future impact of small unmanned aircraft will depend in part on how well they can navigate in GPS-denied and GPS-degraded environments. While several GPS-denied navigation methods have been introduced, small fixed-wing aircraft have, for the most part, been neglected. This paper introduces a method to enable GPS-denied fixed-wing flight while accounting for fixed-wing-specific sensing requirements. This work uses a methodology called relative navigation as an overarching framework. The development of an odometry-like, front-end, EKF-based estimator that utilizes only a monocular camera and an inertial measurement unit is presented. The filter uses the measurement model of the multi-state-constraint Kalman filter. …


Wetting Metamorphosis Of Hydrophobic Fluoropolymer Coatings Submerged In Water And Ultrasonically Vibrated, Matthew Trapuzzano, Nathan B. Crane, Rasim Guldiken, Andrés Tejada-Martínez Aug 2019

Wetting Metamorphosis Of Hydrophobic Fluoropolymer Coatings Submerged In Water And Ultrasonically Vibrated, Matthew Trapuzzano, Nathan B. Crane, Rasim Guldiken, Andrés Tejada-Martínez

Faculty Publications

Many important processes, from manufacture of integrated circuit boards, to an insect’s ability to walk on water, depend on the wetting of liquids on surfaces. Wetting is commonly controlled through material selection, coatings, and/or surface texture. However, wetting is sensitive to environmental conditions. In particular, some hydrophobic fluoropolymer coatings are sensitive to extended water exposure as evidenced by a declining contact angle and increasing contact angle hysteresis. Understanding “degradation” of these coatings is critical to applications that employ them. The durability of a series of fluoropolymer coatings were tested by measuring the contact angle before, during, and after extended submersion …


Takeoff And Performance Tradeoffs Of Retrofit Distributed Electric Propulsion For Urban Transport, Kevin Moore, Andrew Ning Aug 2019

Takeoff And Performance Tradeoffs Of Retrofit Distributed Electric Propulsion For Urban Transport, Kevin Moore, Andrew Ning

Faculty Publications

While vertical takeoff and landing aircraft have shown promise for urban air transport, distributed electric propulsion on existing aircraft may offer immediately implementable alternatives. Distributed electric propulsion could potentially decrease takeoff distances enough to enable thousands of potential inter-city runways. This conceptual study explores the effects of a retrofit of open-bladed electric propulsion units. To model and explore the design space we use blade element momentum method, vortex lattice method, linear-beam finite element analysis, classical laminate theory, composite failure, empirically-based blade noise modeling, motor and motor-controller mass models, and gradient-based optimization. With liftoff time of seconds and the safe total …


Binder Jetting: A Review Of Process, Materials, And Methods, Mohsen Ziaee, Nathan B. Crane Aug 2019

Binder Jetting: A Review Of Process, Materials, And Methods, Mohsen Ziaee, Nathan B. Crane

Faculty Publications

Binder Jet printing is an additive manufacturing technique that dispenses liquid binding agent on powder. Layers are formed repeatedly to build up a physical article. Binder jetting (BJ) can be adapted to almost any powder with high production rates. The BJ process utilizes a broad range of technologies including printing methods, powder deposition, dynamic binder/powder interaction, and post-processing methods. A wide variety of materials have been demonstrated including polymers, metals, and ceramics, but a common challenge is developing printing and post-processing methods that maximize part performance. This article presents a broad review of technologies and approaches that have been applied …


Simulated Tremor Propagation In The Upper Limb: From Muscle Activity To Joint Displacement, Thomas Corie, Steven Knight Charles Aug 2019

Simulated Tremor Propagation In The Upper Limb: From Muscle Activity To Joint Displacement, Thomas Corie, Steven Knight Charles

Faculty Publications

Although tremor is the most common movement disorder, there are few non-invasive treatment options. Creating effective tremor suppression devices requires a knowledge of where tremor originates mechanically (which muscles) and how it propagates through the limb (to which degrees of freedom, DOF).

To simulate tremor propagation, we created a simple model of the upper limb, with tremorogenic activity in the 15 major superficial muscles as inputs and tremulous joint displacement in the 7 major DOF as outputs. The model approximated the muscle excitation-contraction dynamics, musculoskeletal geometry, and mechanical impedance of the limb.

From our simulations, we determined fundamental principles for …


Impact Of Pulse Length On The Accuracy Of Defect Depth Measurements In Pulse Thermography, James Pierce, Nathan B. Crane Apr 2019

Impact Of Pulse Length On The Accuracy Of Defect Depth Measurements In Pulse Thermography, James Pierce, Nathan B. Crane

Faculty Publications

Pulse thermography is a nondestructive testing method in which an energy pulse is applied to a surface while the surface temperature evolution is measured to detect sub surface defects and estimate their depth. This nondestructive test method was developed on the assumption of instantaneous surface heating, but recent work has shown that relatively long pulses can be used to accurately determine defect depth in polymers. This paper examines the impact of varying input pulse length on the accuracy of defect depth quantification as a function of the material properties. Simulations using both thermoplastics and metals show that measurement error is …


Developable Mechanisms On Developable Surfaces, Todd G. Nelson, Trent K. Zimmerman, Robert J. Lang, Spencer P. Magleby, Larry L. Howell Feb 2019

Developable Mechanisms On Developable Surfaces, Todd G. Nelson, Trent K. Zimmerman, Robert J. Lang, Spencer P. Magleby, Larry L. Howell

Faculty Publications

The trend toward smaller mechanism footprints and volumes, while maintaining the ability to perform complex tasks, presents the opportunity for exploration of hypercompact mechanical systems integrated with curved surfaces. Developable surfaces are shapes that a flat sheet can take without tearing or stretching, and they represent a wide range of manufactured surfaces. This work introduces “developable mechanisms” as devices that emerge from or conform to developable surfaces. They are made possible by aligning hinge axes with developable surface ruling lines to enable mobility. Because rigid-link motion depends on the relative orientation of hinge axes and not link geometry, links can …


Influence Of Micro-Structured Superhydrophobic Surfaces On Nucleation And Natural Convection In A Heated Pool, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson Feb 2019

Influence Of Micro-Structured Superhydrophobic Surfaces On Nucleation And Natural Convection In A Heated Pool, Adam Cowley, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This word experimentally explores sub-boiling pool nucleation on micro-structured superhydrophobic surfaces. All surfaces tested were submerged in a 20 mm deep pool of water and heated from below to maintain a constant surface temperature, while the side walls of the pool were insulated, and the top was covered. Three thermocouples positioned in the pool obtain the average pool temperature. A heat flux sensor is placed directly beneath the surface to measure the heat flux supplied to the pool. Free convection heat transfer coefficients are obtained for the sub-boiling temperature range of 40 – 90 ºC. Six surface types are studied: …


Optimization Of Turbine Design In Wind Farms With Multiple Hub Heights, Using Exact Analytic Gradients And Structural Constraints, Andrew P.J. Stanley, Andrew Ning, Katherine Dykes Jan 2019

Optimization Of Turbine Design In Wind Farms With Multiple Hub Heights, Using Exact Analytic Gradients And Structural Constraints, Andrew P.J. Stanley, Andrew Ning, Katherine Dykes

Faculty Publications

Wind farms are generally designed with turbines of all the same hub height. If wind farms were designed with turbines of different hub heights, wake interference between turbines could be reduced, lowering the cost of energy (COE). This paper demonstrates a method to optimize onshore wind farms with two different hub heights using exact, analytic gradients. Gradient-based optimization with exact gradients scales well with large problems and is preferable in this application over gradient-free methods. Our model consisted of the following: a version of the FLOw Redirection and Induction in Steady-State wake model that accommodated three- dimensional wakes and calculated …