Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 87

Full-Text Articles in Entire DC Network

Optimal Mixed Tracking/Impedance Control With Application To Transfemoral Prostheses With Energy Regeneration, Gholamreza Khademi, Hanieh Mohammadi, Hanz Richter, Daniel J. Simon Nov 2019

Optimal Mixed Tracking/Impedance Control With Application To Transfemoral Prostheses With Energy Regeneration, Gholamreza Khademi, Hanieh Mohammadi, Hanz Richter, Daniel J. Simon

Daniel J. Simon

We design an optimal passivitybased tracking/impedance control system for a robotic manipulator with energy regenerative electronics, where the manipulator has both actively and semi-actively controlled joints. The semi-active joints are driven by a regenerative actuator that includes an energy-storing element. Method: External forces can have a large influence on energy regeneration characteristics. Impedance control is used to impose a desired relationship between external forces and deviation from reference trajectories. Multi-objective optimization (MOO) is used to obtain optimal impedance parameters and control gains to compromise between the two conflicting objectives of trajectory tracking and energy regeneration. We solve the MOO ...


Biogeography-Based Optimization For Hydraulic Prosthetic Knee Control, Tim Wilmot, George Thomas, Berney Montavon, Rick Rarick, Antonie J. Van Den Bogert, Steve Szatmary, Daniel J. Simon, William Smith, Sergey Samorezov Nov 2019

Biogeography-Based Optimization For Hydraulic Prosthetic Knee Control, Tim Wilmot, George Thomas, Berney Montavon, Rick Rarick, Antonie J. Van Den Bogert, Steve Szatmary, Daniel J. Simon, William Smith, Sergey Samorezov

Daniel J. Simon

We discuss open-loop control development and simulation results for a newly-developed cyber-physical system (CPS) used as a semi-active, above-knee prosthesis. The control signal of our CPS consists of two hydraulic valve settings that control a linear cylinder actuator and provide torque to the prosthetic knee. We develop open-loop control using biogeography-based optimization (BBO), which is a recently developed evolutionary algorithm. The research contributes to the field of cyber-physical systems by showing that it is possible to find effective open-loop control signals for our newly proposed semi-active hydraulic knee prosthesis through a dual-system optimization process which includes both human and robot ...


Mechatronics Education At Kettering University: Development Of Learning- Specific Hardware And Software, Jeffrey Hargrove, Theodore J. Stokes Oct 2019

Mechatronics Education At Kettering University: Development Of Learning- Specific Hardware And Software, Jeffrey Hargrove, Theodore J. Stokes

Jeffrey Hargrove

A series of learning-specific electronic circuit boards and associated software has been developed to support mechatronics education in the Mechanical Engineering Department at Kettering University. The boards are designed to interface to the Toshiba TLCS-900H Microprocessor Trainer and Evaluation Board. The purpose of these boards is to provide mechanical engineering students of mechatronics with robust hardware that readily permits interfacing of sensors and actuators to microcontrollers used in mechatronic applications. Further, the boards feature signal conditioning circuits for use in conjunction with sensors, and driver circuits for operating high-current actuating devices. Supporting software has been written to permit ready use ...


Development And Implementation Of Mechatronics Education At Kettering University, Jeffrey Hargrove Oct 2019

Development And Implementation Of Mechatronics Education At Kettering University, Jeffrey Hargrove

Jeffrey Hargrove

The Mechanical Engineering Department at Kettering University has completed development of a significant new component of education in mechatronics. The work began in the fall of 1997 as the principal part of an award for “Instrumentation and Laboratory Improvement” by the Division of Undergraduate Education of the National Science Foundation. It has culminated with the successful implementation of two undergraduate courses in mechatronics, two mechatronics laboratories and a website to support the educational endeavors of the mechatronics students. As will be described in this paper, the first course and its laboratory exercises are designed specifically to provide the students with ...


Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Oct 2019

Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Jeremy Watts

The Ceramic On-Demand Extrusion (CODE) process is a novel additive manufacturing process for fabricating dense ceramic components from aqueous pastes of high solids loading. In this study, 3 mol% Y2O3 stabilized tetragonal zirconia polycrystal (3Y-TZP) parts were fabricated using the CODE process. The parts were then dried in a humidity controlled environmental chamber and sintered under atmospheric pressure. Mechanical properties of the sintered parts were examined using ASTM standard test techniques, including density, Young’s modulus, flexural strength, Weibull modulus, fracture toughness and Vickers hardness. The microstructure was analyzed, and grain size was measured using scanning electron ...


Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu Oct 2019

Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu

Jeremy Watts

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. Presented in this paper is a further development of this process focusing on fabrication of functionally graded materials (FGM). A dynamic mixing mechanism was developed for mixing constituent ceramic pastes, and an extrusion control scheme was developed for fabricating specimens with desired material compositions graded in real time. FGM specimens with compositions graded between Al2O3 and ZrO2 were fabricated and ultimately densified by sintering to validate the effectiveness of the CODE process for FGM fabrication. Energy dispersive spectroscopy ...


Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Oct 2019

Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Jeremy Watts

This work describes a process by which zirconium diboride (ZrB2) parts may be fabricated using the Ceramic On-Demand Extrusion (CODE) process. An oxide-carbide-nitride system consisting of ceramic powders and pre-ceramic organics, designed to yield ZrB2 after reaction sintering, has been developed to produce an aqueous-based extrudate for subsequent processing in the CODE system. Pressurelessly sintered test specimens containing 1 wt% PVA binder achieve high relative density ≥ 99%. The viscoelastic response of the extrudate was characterized via spindle rheometry with a small sample adapter. Batches with 1 wt% PVA and 0.5 wt% Methocel show strong shear thinning characteristic, under ...


Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk Oct 2019

Recyclability Of 304l Stainless Steel In The Selective Laser Melting Process, Austin T. Sutton, Caitlin S. Kriewall, Ming-Chuan Leu, Joseph William Newkirk

Joseph William Newkirk

During part fabrication by selective laser melting (SLM), a powder-bed fusion process in Additive Manufacturing (AM), a large amount of energy is input from the laser into the melt pool, causing generation of spatter and condensate, both of which have the potential to settle in the surrounding powder-bed compromising its reusability. In this study, 304L stainless steel powder is subjected to five reuses in the SLM process to assess its recyclability through characterization of both powder and mechanical properties. Powder was characterized morphologically by particle size distribution measurements, oxygen content with inert gas fusion analysis, and phase identification by X-ray ...


Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Oct 2019

Properties Of Partially Stabilized Zirconia Components Fabricated By The Ceramic On-Demand Extrusion Process, Wenbin Li, Amir Ghazanfari, Devin Mcmillen, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Greg Hilmas

The Ceramic On-Demand Extrusion (CODE) process is a novel additive manufacturing process for fabricating dense ceramic components from aqueous pastes of high solids loading. In this study, 3 mol% Y2O3 stabilized tetragonal zirconia polycrystal (3Y-TZP) parts were fabricated using the CODE process. The parts were then dried in a humidity controlled environmental chamber and sintered under atmospheric pressure. Mechanical properties of the sintered parts were examined using ASTM standard test techniques, including density, Young’s modulus, flexural strength, Weibull modulus, fracture toughness and Vickers hardness. The microstructure was analyzed, and grain size was measured using scanning electron ...


Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers Oct 2019

Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers

Greg Hilmas

A freeform extrusion fabrication process for producing three - dimensional ceramic, metal and functionally gradient composite objects, including the steps of filling a plurality of paste sources with a respective plurality of aqueous paste compositions, operationally connecting respective syringes containing respective aqueous paste compositions to a mix ing chamber, moving a first aqueous paste composition from a first respective paste source into the mixing chamber, moving a second aqueous paste composition from a second respective paste source into the mixing chamber, mixing the first and second aqueous paste compositions to define a first admixture having a first admixture composition, extruding the ...


Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu Oct 2019

Fabricating Functionally Graded Materials By Ceramic On-Demand Extrusion With Dynamic Mixing, Wenbin Li, Austin J. Martin, Benjamin Kroehler, Alexander M. Henderson, Tieshu Huang, Jeremy Lee Watts, Greg Hilmas, Ming-Chuan Leu

Greg Hilmas

Ceramic On-Demand Extrusion (CODE) is an extrusion-based additive manufacturing process recently developed for fabricating dense, functional ceramic components. Presented in this paper is a further development of this process focusing on fabrication of functionally graded materials (FGM). A dynamic mixing mechanism was developed for mixing constituent ceramic pastes, and an extrusion control scheme was developed for fabricating specimens with desired material compositions graded in real time. FGM specimens with compositions graded between Al2O3 and ZrO2 were fabricated and ultimately densified by sintering to validate the effectiveness of the CODE process for FGM fabrication. Energy dispersive spectroscopy ...


Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts Oct 2019

Designed Extrudate For Additive Manufacturing Of Zirconium Diboride By Ceramic On-Demand Extrusion, Devin Mcmillen, Wenbin Li, Ming-Chuan Leu, Greg Hilmas, Jeremy Lee Watts

Greg Hilmas

This work describes a process by which zirconium diboride (ZrB2) parts may be fabricated using the Ceramic On-Demand Extrusion (CODE) process. An oxide-carbide-nitride system consisting of ceramic powders and pre-ceramic organics, designed to yield ZrB2 after reaction sintering, has been developed to produce an aqueous-based extrudate for subsequent processing in the CODE system. Pressurelessly sintered test specimens containing 1 wt% PVA binder achieve high relative density ≥ 99%. The viscoelastic response of the extrudate was characterized via spindle rheometry with a small sample adapter. Batches with 1 wt% PVA and 0.5 wt% Methocel show strong shear thinning characteristic, under ...


A Study Of Brain Neuronal And Functional Complexities Estimated Using Multiscale Entropy In Healthy Young Adults, Sreevalsan S. Menon, K. Krishnamurthy Oct 2019

A Study Of Brain Neuronal And Functional Complexities Estimated Using Multiscale Entropy In Healthy Young Adults, Sreevalsan S. Menon, K. Krishnamurthy

K. Krishnamurthy

Brain complexity estimated using sample entropy and multiscale entropy (MSE) has recently gained much attention to compare brain function between diseased or neurologically impaired groups and healthy control groups. Using resting-state functional magnetic resonance imaging (rfMRI) blood oxygen-level dependent (BOLD) signals in a large cohort (n = 967) of healthy young adults, the present study maps neuronal and functional complexities estimated by using MSE of BOLD signals and BOLD phase coherence connectivity, respectively, at various levels of the brain’s organization. The functional complexity explores patterns in a higher dimension than neuronal complexity and may better discern changes in brain functioning ...


Crash Safety In The Introductory Physics Lab, Daniel Ludwigsen, Janet Brelin-Fornari, Joseph Neal Sep 2019

Crash Safety In The Introductory Physics Lab, Daniel Ludwigsen, Janet Brelin-Fornari, Joseph Neal

Daniel Ludwigsen

Crash Safety in the Introductory Physics Lab Abstract In the field of vehicle occupant protection and crash safety, the Deceleration Sled offers researchers a controlled, repeatable, and relatively cost-effective means to test interior parts such as safety restraint systems. The sled can accelerate a 2000 lb payload to achieve a speed of 40 mph before a hydraulically controlled deceleration models the deformation of the vehicle structure during a crash. Understanding the dynamics of the sled and interpreting test results incorporates many of the core concepts of a first course in introductory physics. This application of physics principles is the inspiration ...


The Use Of Sacrificial Support Structures In A Rapid Machining Process, Wutthigrai Boonsuk, Matthew C. Frank Sep 2019

The Use Of Sacrificial Support Structures In A Rapid Machining Process, Wutthigrai Boonsuk, Matthew C. Frank

Wutthigrai Boonsuk

Rapid prototyping techniques for CNC machining have been developed in an effort to produce functional prototypes in appropriate materials. One of the major challenges is to develop an automatic fixturing system for the part during the milling process. The current proposed method, sacrificial support fixturing, is similar to the support structures used in existing rapid processes, such as Stereolithography. During the machining process, the sacrificial supports emerge incrementally and, at the end of the process, are the only entities connecting the part to the stock material. In this paper, we propose methodologies for the design of sacrificial support structures for ...


Pre-Methylation Of Lignin To Improve Storage Stability Of Oil Produced By Solvent Liquefaction, Jae-Young Kim, Parinaz Hafezi-Sefat, Sarah D. Cady, Ryan G. Smith, Robert C. Brown Sep 2019

Pre-Methylation Of Lignin To Improve Storage Stability Of Oil Produced By Solvent Liquefaction, Jae-Young Kim, Parinaz Hafezi-Sefat, Sarah D. Cady, Ryan G. Smith, Robert C. Brown

Sarah Cady

In this study, we methylated hydroxyl groups (phenolic hydroxyl: Phe-OH and aliphatic hydroxyl: Aliph-OH) in soda lignin (SL) prior to solvent liquefaction to improve storage stability of the resulting oil. We investigated two methylating reagents, dimethyl sulfate (DMS) and dimethyl carbonate (DMC), for selective Phe-OH and total hydroxyl group (Phe-OH and Aliph-OH) blocking. Samples of SL, DMS-SL, and DMC-SL were depolymerized into oils under supercritical ethanol (350 °C). Both methylated lignins produced higher amounts of oils and smaller amounts of char compared to untreated SL due to suppressed charring reactions. Oil produced from SL had relatively higher functional group contents ...


Deformation Of Multifunctional Materials At Various Time And Length Scales: A Dic-Based Study, Behrad Koohbor Aug 2019

Deformation Of Multifunctional Materials At Various Time And Length Scales: A Dic-Based Study, Behrad Koohbor

Behrad Koohbor

The focus in the present work is to explore and characterize the underlying deformation and failure mechanisms in multifunctional materials including woven composites and polymeric foams, using full-field measurements. Attention has been especially drawn towards the challenges associated with characterizing these materials at extreme length and time scales, and investigating the advantages of full-field measurements to resolve the existing limitations. Accordingly, the current limitations in the study of dynamic deformation response of low-impedance materials are identified. An approach based on the general stress equilibrium is presented and successfully implemented to include the concurrent effects of inertia and material compressibility into ...


Locomotion Of A Cylindrical Rolling Robot With A Shape Changing Outer Surface, Michael G. Puopolo, Jamey D. Jacob, Emilio Gabino Aug 2019

Locomotion Of A Cylindrical Rolling Robot With A Shape Changing Outer Surface, Michael G. Puopolo, Jamey D. Jacob, Emilio Gabino

Michael G. Puopolo

A cylindrical rolling robot is developed that generates roll torque by changing the shape of its flexible, elliptical outer surface whenever one of four elliptical axes rotates past an inclination called trigger angle. The robot is equipped with a sensing/control system by which it measures angular position and angular velocity, and computes error with respect to a desired step angular velocity profile. When shape change is triggered, the newly assumed shape of the outer surface is determined according to the computed error. A series of trial rolls is conducted using various trigger angles, and energy consumed by the actuation ...


Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel Aug 2019

Thermal Removal Of Carbon Dioxide From The Atmosphere: Energy Requirements And Scaling Issues, Ted Von Hippel

Ted von Hippel

I conduct a systems-level study of direct air capture of CO2 using techniques from thermal physics. This system relies on a combination of an efficient heat exchanger, radiative cooling, and refrigeration, all at industrial scale and operated in environments at low ambient temperatures. While technological developments will be required for such a system to operate efficiently, those developments rest on a long history of refrigeration expertise and technology, and they can be developed and tested at modest scale. I estimate that the energy required to remove CO2 via this approach is comparable to direct air capture by other techniques. The ...


Accelerated Freezing Due To Droplet Pinning On A Nanopillared Surface, Rachel Bohm, Mohammad Rejaul Haque, Chuang Qu, Edward C. Kinzel, Amy Rachel Betz Aug 2019

Accelerated Freezing Due To Droplet Pinning On A Nanopillared Surface, Rachel Bohm, Mohammad Rejaul Haque, Chuang Qu, Edward C. Kinzel, Amy Rachel Betz

Edward C. Kinzel

The freezing process is significantly influenced by environmental factors and surface morphologies. At atmospheric pressure, a surface below the dew and freezing point temperature for a given relative humidity nucleates water droplets heterogeneously on the surface and then freezes. This paper examines the effect of nanostructured surfaces on the nucleation, growth, and subsequent freezing processes. Microsphere Photolithography (MPL) is used to pattern arrays of silica nanopillars. This technique uses a self-assembled lattice of microspheres to focus UV radiation to an array of photonic jets in photoresist. Silica is deposited using e-beam evaporation and lift-off. The samples were placed on a ...


Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao Aug 2019

Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Jie Gao

The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from -1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states ...


Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang Aug 2019

Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang

Jie Gao

Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2 monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2 monolayer precisely determines the output circular ...


Spatial Variation Of Vector Vortex Beams With Plasmonic Metasurfaces, Yuchao Zhang, Jie Gao, Xiaodong Yang Aug 2019

Spatial Variation Of Vector Vortex Beams With Plasmonic Metasurfaces, Yuchao Zhang, Jie Gao, Xiaodong Yang

Jie Gao

The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the ...


Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao Aug 2019

Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao

Jie Gao

The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of ...


Manipulating Transverse Photovoltage Across Plasmonic Triangle Holes Of Symmetry Breaking, Marjan Akbari, Jie Gao, Xiaodong Yang Aug 2019

Manipulating Transverse Photovoltage Across Plasmonic Triangle Holes Of Symmetry Breaking, Marjan Akbari, Jie Gao, Xiaodong Yang

Jie Gao

The transverse photo-induced voltages generated by the photon drag effect under normally and obliquely incident circularly polarized light across the plasmonic symmetry-breaking isosceles-triangle holes and right-triangle holes have been characterized. It is observed that the sign of transverse photovoltage flips when the incident circular polarization is switched for both types of plasmonic triangle holes. However, the unbalanced photovoltage between two circular polarizations is achieved across the plasmonic right-triangle holes, compared to the balanced photovoltage in the plasmonic isosceles-triangle holes. Such manipulation of the sign and the amplitude of transverse photovoltage is enabled by the broken symmetries of the electric and ...


Generation Of Nondiffracting Vector Beams With Ring-Shaped Plasmonic Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao Aug 2019

Generation Of Nondiffracting Vector Beams With Ring-Shaped Plasmonic Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Jie Gao

Nondiffracting Bessel, Mathieu, and Weber vector beams are generated by using ring-shaped plasmonic geometric metasurfaces. The nondiffracting vector beam is produced by the superposition of two off-axis right-handed and left-handed circularly polarized nondiffracting scalar beams described by the Whittaker integral, which are simultaneously generated by a single metasurface with the ring-shaped phase profile. The polarization states of the generated nondiffracting vector beams are analyzed by the Stokes parameters and the orbital angular momentum states are measured by the beam interference. In addition, the selfhealing properties of nondiffracting vector beams are further demonstrated, showing that not only the beam profiles but ...


Enhanced Quantum Dots Spontaneous Emission With Metamaterial Perfect Absorbers, Wei Wang, Xiaodong Yang, Ting S. Luk, Jie Gao Aug 2019

Enhanced Quantum Dots Spontaneous Emission With Metamaterial Perfect Absorbers, Wei Wang, Xiaodong Yang, Ting S. Luk, Jie Gao

Jie Gao

Metamaterial perfect absorbers (PAs) made of a hexagonal array of holes on Ag-SiO 2 -Ag thin films have been realized and utilized to enhance the spontaneous emission rate and photoluminescence intensity of CdSe/ZnS quantum dots (QDs) spin-coated on the absorber top surface. Perfect absorption of incoming light occurs at the wavelength where the impedance is matched to that of the free space. When QDs strongly excite both the electric and magnetic resonances at this perfect absorption wavelength, a significant Purcell effect on the spontaneous emission process and enhanced radiative outcoupling of photoluminescence intensity are expected. For perfect absorbers with ...


Optical Transportation And Accumulation Of Microparticles By Self-Accelerating Cusp Beams, Weiwei Liu, Xiaodong Yang, Jie Gao Aug 2019

Optical Transportation And Accumulation Of Microparticles By Self-Accelerating Cusp Beams, Weiwei Liu, Xiaodong Yang, Jie Gao

Jie Gao

Most of the self-accelerating beams have monotonous single-channel bending structures, which greatly limit their applications in many fields such as microscopic imaging and particle manipulation. In this paper, the self-accelerating cusp beams with variable numbers of multichannel bending structures are generated to demonstrate the optical transportation and accumulation of micrometer polystyrene particles. The transportation velocity and optical force profiles of the microparticles moving along the bending channels of cusp beams are analyzed. Parallel particle transportation and particle accumulation manipulation from all the bending channels are further demonstrated. These results will inspire a lot of promising applications for self-accelerating beams especially ...


3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao Aug 2019

3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao

Jie Gao

Helical structures have attracted considerable attention due to their inherent optical chirality. Here, we report a unique type of 3D Janus plasmonic helical nanoaperture with direction-controlled polarization sensitivity, which is simply fabricated via the one-step grayscale focused ion beam milling method. Circular dichroism in transmission of as large as 0.72 is experimentally realized in the forward direction due to the spin-dependent mode coupling process inside the helical nanoaperture. However, in the backward direction, the nanoaperture acquires giant linear dichroism in transmission of up to 0.87. By encoding the Janus metasurface with the two nanoaperture enantiomers having specified rotation ...


Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen Aug 2019

Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen

Lianyi Chen

Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the ...