Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Design And Modeling Of A New Biomimetic Soft Robotic Jellyfish Using Ipmc-Based Electroactive Polymers, Zakai J. Olsen, Kwang J. Kim Nov 2019

Design And Modeling Of A New Biomimetic Soft Robotic Jellyfish Using Ipmc-Based Electroactive Polymers, Zakai J. Olsen, Kwang J. Kim

Mechanical Engineering Faculty Publications

Smart materials and soft robotics have been seen to be particularly well-suited for developing biomimetic devices and are active fields of research. In this study, the design and modeling of a new biomimetic soft robot is described. Initial work was made in the modeling of a biomimetic robot based on the locomotion and kinematics of jellyfish. Modifications were made to the governing equations for jellyfish locomotion that accounted for geometric differences between biology and the robotic design. In particular, the capability of the model to account for the mass and geometry of the robot design has been added for better ...


Non-Einstein Viscosity Phenomenon Of Acrylonitrile–Butadiene–Styrene Composites Containing Lignin–Polycaprolactone Particulates Highly Dispersed By High-Shear Stress, Sing-Hoon Kim, Kisuk Choi, Kyouk Ryeol Choi, Taesung Kim, Jonghwan Suhr, Kwang Jin Kim, Hyoung Jin Choi, Jae-Do Nam Jun 2019

Non-Einstein Viscosity Phenomenon Of Acrylonitrile–Butadiene–Styrene Composites Containing Lignin–Polycaprolactone Particulates Highly Dispersed By High-Shear Stress, Sing-Hoon Kim, Kisuk Choi, Kyouk Ryeol Choi, Taesung Kim, Jonghwan Suhr, Kwang Jin Kim, Hyoung Jin Choi, Jae-Do Nam

Mechanical Engineering Faculty Publications

Lignin powder was modified via ring-opening polymerization of caprolactone to form a lignin–polycaprolactone (LPCL) particulate. The LPCL particulates were mixed with an acrylonitrile–butadiene–styrene (ABS) matrix at an extremely high rotational speed of up to 3000 rpm, which was achieved by a closed-loop screw mixer and in-line melt extruder. Using this high-shear extruding mixer, the LPCL particulate size was controlled in the range of 3395 nm (conventional twin-screw extrusion) down to 638 nm (high-shear mixer of 3000 rpm) by altering the mixing speed and time. The resulting LPCL/ABS composites clearly showed non-Einstein viscosity phenomena, exhibiting reduced viscosity ...


Statistical Optimization Of Stress Level In Mg-Li-Al Alloys Upon Hot Compression Testing, Rezawana Islam, Meysem Haghshenas Jun 2019

Statistical Optimization Of Stress Level In Mg-Li-Al Alloys Upon Hot Compression Testing, Rezawana Islam, Meysem Haghshenas

Mechanical Engineering Faculty Publications

In the present study, a response optimization method using Extreme Vertices Mixer Design (EVMD) approach is proposed for stress optimization in a thermomechanically processed Mg-Li-Al alloy. Experimentation was planned as per mixed design proportions of Mg, Li and Al and process variables (i.e. temperature and strain rate). Each experiment has been performed under different conditions of factors proportions and process variables. The response, particularly stress has been considered for each experiment. The response is optimized to find an optimum condition when the contributing factors influence material characteristics in such a way, to achieve better strength, ductility and corrosion resistance ...


Magnesium Nanocomposites: An Overview On Time-Dependent Plastic (Creep) Deformation, Meysem Haghshenas, Manoj Gupta Apr 2019

Magnesium Nanocomposites: An Overview On Time-Dependent Plastic (Creep) Deformation, Meysem Haghshenas, Manoj Gupta

Mechanical Engineering Faculty Publications

Magnesium (Mg) nanocomposites are created when nano-size particles are embedded into the Mg (or Mg alloy) matrix. The Mg nanocomposites, cited as high-strength energy-saving materials of future, are a group of emerging materials with excellent combination of strength and ductility and superior specific strength property (strength-to-weight ratio). Having said this, Mg nanocomposites are considered as promising replacement for other structural alloys (i.e. aluminum and titanium) wherever low density and high strength are required, i.e. transportation, aerospace, defense, etc. To be able to apply this group of materials for real components, different failure mechanisms at ambient and elevated temperatures ...


Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang Mar 2019

Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang

Mechanical Engineering Faculty Publications

Shear strength is a widely investigated parameter for reinforced concrete structures. The corrosion of reinforcement results in shear strength reduction. Corrosion has become one of the main deterioration factors in reinforced concrete beam. This paper proposes a shear strength model for beams with inclined bars based on a limit equilibrium method. The proposed model can be applied to both corroded and uncorroded reinforced concrete beams. Besides the tensile strength of longitudinal steel bars, the shear capacity provided by the concrete on the top of the diagonal crack, the tensile force of the shear steel at the diagonal crack, the degradation ...


Design And Analysis Of Novel Actuation Mechanism With Controllable Stiffness, Erivelton Gualter Dos Santos, Hanz Richter Feb 2019

Design And Analysis Of Novel Actuation Mechanism With Controllable Stiffness, Erivelton Gualter Dos Santos, Hanz Richter

Mechanical Engineering Faculty Publications

Actuators intended for human–machine interaction systems are usually designed to be mechanically compliant. Conventional actuators are not suitable for this purpose due to typically high stiffness. Advanced powered prosthetic and orthotic devices can vary their stiffness during a motion cycle and are power-efficient. This paper proposes a novel actuator design that modulates stiffness by means of a flexible beam. A motorized drive system varies the active length of the cantilever beam, thus achieving stiffness modulation. New large deflection formulation for cantilever beams with rolling contact constraints is used to determine the moment produced by the actuator. To validate the ...


Achieving Superelasticity In Additively Manufactured Niti In Compression Without Post-Process Heat Treatment, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Alejandro Hinojos, Ali Ramazani, Julia Kundin, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Jan 2019

Achieving Superelasticity In Additively Manufactured Niti In Compression Without Post-Process Heat Treatment, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Alejandro Hinojos, Ali Ramazani, Julia Kundin, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Shape memory alloys (SMAs), such as Nitinol (i.e., NiTi), are of great importance in biomedical and engineering applications due to their unique superelasticity and shape memory properties. In recent years, additive manufacturing (AM) processes have been used to produce complex NiTi components, which provide the ability to tailor microstructure and thus the critical properties of the alloys, such as the superelastic behavior and transformation temperatures (TTs), by selection of processing parameters. In biomedical applications, superelasticity in implants play a critical role since it gives the implants bone-like behavior. In this study, a methodology of improving superelasticity in Ni-rich NiTi ...


Introduction For The Special Issue On Beyond The Hypes Of Geospatial Big Data: Theories, Methods, Analytics, And Applications, Qianxing Wang, Allison Kealy, Shengjie Zhai Jan 2019

Introduction For The Special Issue On Beyond The Hypes Of Geospatial Big Data: Theories, Methods, Analytics, And Applications, Qianxing Wang, Allison Kealy, Shengjie Zhai

Mechanical Engineering Faculty Publications

We live in the era of ‘Big Data’. In particular, Geospatial data, whether captured through remote sensors (e.g., satellite imagery) or generated from large-scale simulations (e.g., climate change models) have always been significantly large in size. Over the last decade however, advances in instrumentation and computation has seen the volume, variety, velocity, and veracity of this data increase exponentially. Of the 2.5 quintillion (1018) bytes of data that are generated on a daily basis across the globe, a large portion (arguably as much as 80%) is found to be geo-referenced. Therefore, this special issue is dedicated to ...