Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

2019

Utah State University

Planetary

Articles 1 - 1 of 1

Full-Text Articles in Entire DC Network

Isentropic Efficiency And Theoretical Analysis Of The Planetary Rotor Expander, Joseph L. James Aug 2019

Isentropic Efficiency And Theoretical Analysis Of The Planetary Rotor Expander, Joseph L. James

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Expanders allow pressurized fluids to undergo a pressure decrease in a controlled environment via volumetric growth to extract fluid energy. There are many types of expanders, and the objective of this thesis is to model the efficiencies of the planetary rotor expander (PRE), a century-old design undeveloped due to insufficient manufacturing capabilities (until recently). Geometric relationships are derived and mathematical models are generated to determine the efficiency of the PRE as a function of design variables. Two industrially relevant case studies show that, to maximize isentropic efficiency, the planetary rotor expander (PRE) rotational frequency is maximized and rotor geometry optimized.