Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang Mar 2019

Limit Equilibrium Method-Based Shear Strength Prediction For Corroded Reinforced Concrete Beam With Inclined Bars, Yafei Ma, Baoyong Lu, Zhongzhao Guo, Lei Wang, Hailong Chen, Jianren Zhang

Mechanical Engineering Faculty Publications

Shear strength is a widely investigated parameter for reinforced concrete structures. The corrosion of reinforcement results in shear strength reduction. Corrosion has become one of the main deterioration factors in reinforced concrete beam. This paper proposes a shear strength model for beams with inclined bars based on a limit equilibrium method. The proposed model can be applied to both corroded and uncorroded reinforced concrete beams. Besides the tensile strength of longitudinal steel bars, the shear capacity provided by the concrete on the top of the diagonal crack, the tensile force of the shear steel at the diagonal crack, the degradation …


Achieving Superelasticity In Additively Manufactured Niti In Compression Without Post-Process Heat Treatment, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Alejandro Hinojos, Ali Ramazani, Julia Kundin, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Jan 2019

Achieving Superelasticity In Additively Manufactured Niti In Compression Without Post-Process Heat Treatment, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Alejandro Hinojos, Ali Ramazani, Julia Kundin, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Shape memory alloys (SMAs), such as Nitinol (i.e., NiTi), are of great importance in biomedical and engineering applications due to their unique superelasticity and shape memory properties. In recent years, additive manufacturing (AM) processes have been used to produce complex NiTi components, which provide the ability to tailor microstructure and thus the critical properties of the alloys, such as the superelastic behavior and transformation temperatures (TTs), by selection of processing parameters. In biomedical applications, superelasticity in implants play a critical role since it gives the implants bone-like behavior. In this study, a methodology of improving superelasticity in Ni-rich NiTi components …


Computationally Efficient, Multi-Domain Hybrid Modeling Of Surface Integrity In Machining And Related Thermomechanical Finishing Processes, Julius M. Schoop, David Adeniji, Ian S. Brown Jan 2019

Computationally Efficient, Multi-Domain Hybrid Modeling Of Surface Integrity In Machining And Related Thermomechanical Finishing Processes, Julius M. Schoop, David Adeniji, Ian S. Brown

Mechanical Engineering Faculty Publications

In order to enable more widespread implementation of sophisticated process modeling, a novel, rapidly deployable multi-physics hybrid model of surface integrity in finishing operations is proposed. Rather than modeling detailed chip formation mechanics, as is common in numerical models, the proposed models integrates existing analytical and semi-empirical models of the plastic, elastic, thermal and thermodynamic domains. Using this approach, highly complex surface integrity phenomena such as residual stresses, grain size, phase composition, microhardness profile, etc. can be accurately predicted in a manner of seconds. It is envisioned that this highly efficient modeling scheme will drive new innovations in surface engineering.