Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Laminar And Turbulent Natural Convection Heat Transfer In Trombe Wall Channels, Tony D. T. Chen Jul 1992

Laminar And Turbulent Natural Convection Heat Transfer In Trombe Wall Channels, Tony D. T. Chen

Mechanical & Aerospace Engineering Theses & Dissertations

The natural convective heat transfer and air movement in a Trombe wall solar passive system has been studied analytically and numerically. Three Trombe wall channel geometries including the parallel channel with axial inlet and exit, parallel channel with side vents and Trombe wall channel coupled to the room have been considered. Several models representing these Trombe wall geometries have been formulated. For the parallel channel with axial inlet and exit geometry, a momentum-integral method has been used to solve parabolic governing equations for two-dimensional laminar flow. This formulation leads to a second order ordinary differential equation for pressure defect in …


Liquid Immersion Cooling Of A Longitudinal Array Of Discrete Heat Sources In Protruding Substrates: I—Single-Phase Convection, Theodore J. Heindel, F. P. Incropera, S. Ramadhyani Mar 1992

Liquid Immersion Cooling Of A Longitudinal Array Of Discrete Heat Sources In Protruding Substrates: I—Single-Phase Convection, Theodore J. Heindel, F. P. Incropera, S. Ramadhyani

Theodore J. Heindel

Experiments have been performed using water and FC-77 to investigate heat transfer from an in-line 1 x 10 array of discrete heat sources, flush mounted to protruding substrates located on the bottom wall of a horizontal flow channel. The data encompass flow regimes ranging from mixed convection to laminar and turbulent forced convection. Buoyancy-induced secondary flows enhanced heat transfer at downstream heater locations and provided heat transfer coefficients comparable to upstream values. Upstream heating extended enhancement on the downstream heaters to larger Reynolds numbers. Higher Prandtl number fluids also extended heat transfer enhancement to larger Reynolds numbers, while a reduction …