Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Series

Faculty Publications

Electrodeposition

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

High-Pressure Torsion-Induced Grain Growth In Electrodeposited Nanocrystalline Ni, X. Z. Liao, A. R. Kilmametov, R. Z. Valiev, Hongsheng Gao, Xiaodong Li, A. K. Mukherjee, J. F. Blingert, Y. T. Zhu Jan 2006

High-Pressure Torsion-Induced Grain Growth In Electrodeposited Nanocrystalline Ni, X. Z. Liao, A. R. Kilmametov, R. Z. Valiev, Hongsheng Gao, Xiaodong Li, A. K. Mukherjee, J. F. Blingert, Y. T. Zhu

Faculty Publications

Deformation-induced grain growth has been reported in nanocrystalline (nc) materials under indentation and severe cyclic loading, but not under any other deformation mode. This raises an issue on critical conditions for grain growth in nc materials. This study investigates deformation-induced grain growth in electrodeposited nc Ni during high-pressure torsion (HPT). Our results indicate that high stress and severe plastic deformation are required for inducing grain growth, and the upper limit of grain size is determined by the deformation mode and parameters. Also, texture evolution suggests that grain-boundary-mediated mechanisms played a significant role in accommodating HPT strain.


Mechanics Of Hydrogenated Amorphous Carbon Deposits From Electron-Beam-Induced Deposition Of Paraffin Precursor, W. Ding, D. A. Dikin, X. Chen, R. D. Piner, R. S. Ruoff, E. Zussman, X. Wang, Xiaodong Li Jul 2005

Mechanics Of Hydrogenated Amorphous Carbon Deposits From Electron-Beam-Induced Deposition Of Paraffin Precursor, W. Ding, D. A. Dikin, X. Chen, R. D. Piner, R. S. Ruoff, E. Zussman, X. Wang, Xiaodong Li

Faculty Publications

Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition(EBID) has been used to depositcarbonfilms that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBIDdeposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBIDdeposit was found to be hydrogenated amorphous carbon (a-C:H) having …