Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Selected Works

2015

Terrence R Meyer

Raman coherence

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Hybrid Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering For High-Speed Gas-Phase Thermometry, Joseph D. Miller, Mikhail N. Slipchenko, Terrence R. Meyer, Hans U. Stauffer, James R. Goird Nov 2015

Hybrid Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering For High-Speed Gas-Phase Thermometry, Joseph D. Miller, Mikhail N. Slipchenko, Terrence R. Meyer, Hans U. Stauffer, James R. Goird

Terrence R Meyer

We demonstrate hybrid femtosecond/picosecond (fs/ps) coherent anti-Stokes Raman scattering for high-speed thermometry in unsteady high-temperature flames, including successful comparisons with a time- and frequencyresolved theoretical model. After excitation of the N2 vibrational manifold with 100 fs broadband pump and Stokes beams, the Raman coherence is probed using a frequency-narrowed 2:5 ps probe beam that is time delayed to suppress the nonresonant background by 2 orders of magnitude. Experimental spectra were obtained at 500 Hz in steady and pulsed H2–air flames and exhibit a temperature precision of 2.2% and an accuracy of 3.3% up to 2400 K. Strategies for real-time gas-phase …


Femtosecond Coherent Anti-Stokes Raman Scattering Measurement Of Gas Temperatures From Frequency-Spread Dephasing Of The Raman Coherence, Robert P. Lucht, Sukesh Roy, Terrence R. Meyer, James R. Gord Nov 2015

Femtosecond Coherent Anti-Stokes Raman Scattering Measurement Of Gas Temperatures From Frequency-Spread Dephasing Of The Raman Coherence, Robert P. Lucht, Sukesh Roy, Terrence R. Meyer, James R. Gord

Terrence R Meyer

Gas-phase temperatures and concentrations are measured from the magnitude and decay of the initial Raman coherence in femtosecond coherent anti-Stokes Raman scattering (CARS). A time-delayed probe beam is scattered from the Raman polarization induced by pump and Stokes beams to generate CARS signal; the dephasing rate of this initial coherence is determined by the temperature-sensitive frequency spread of the Raman transitions. Temperature is measured from the CARS signal decrease with increasing probe delay. Concentration is found from the ratio of the CARS and nonresonant background signals. Collision rates do not affect the determination of these quantities.