Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Compact Kinetic Models For Typical And Alternative Aviation Turbine Fuels And Their Surrogates, Sang Hee Won, Jeffrey S. Santner, Francis M. Haas, Frederick L. Dryer, Stephen Dooley Apr 2015

Compact Kinetic Models For Typical And Alternative Aviation Turbine Fuels And Their Surrogates, Sang Hee Won, Jeffrey S. Santner, Francis M. Haas, Frederick L. Dryer, Stephen Dooley

Francis (Mac) Haas

Computational combustor design and analysis demands combustion kinetic models that are sufficiently compact in species number so that they can be used in multi-dimensional reacting computational fluid dynamics (CFD) simulations. These models ideally predict dynamic global combustion behaviors and emissions as faithfully as detailed kinetic models, but with significantly lower computational costs than even “reduced” models. Another aspect of computational engine analysis is the need to predict combustion and emissions behaviors resulting from variations in fuel composition, which is likely to increase as alternative fuels are used displace/replace conventional petro-derived aviation kerosenes. Accordingly, this work discusses a general methodology for …


Rate Coefficients For H+No2→Oh+No From High Pressure Flow Reactor Experiments, Francis M. Haas, Frederick L. Dryer Apr 2015

Rate Coefficients For H+No2→Oh+No From High Pressure Flow Reactor Experiments, Francis M. Haas, Frederick L. Dryer

Francis (Mac) Haas

Rate coefficients for the reaction H+NO2 → OH+NO (R1) were determined over the
nominal temperature and pressure ranges of 737-882 K and 10-20 atm, respectively, from spatially
resolved measurements in two different flow reactor facilities: one laminar and one turbulent. The
title reaction is important in a variety of situations including NO↔NO2 interconversion in the
power extraction stage of gas turbines, exhaust gas recirculation (EGR)-affected ignition in
reciprocating engines, and for H atom titration in elementary gas phase kinetics experiments. This
work determines absolute values of k1 with reference to the relatively well known rate coefficients
for H+O2+M → HO2+M …