Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Entire DC Network

3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner Oct 2011

3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner

Ming-Chen Hsu

In this two-part paper, we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2, we focus on the structural discretization for wind turbine blades and the details of the fluid–structure interaction computational …


High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Oct 2011

High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

In this article we present a high-performance computing framework for advanced flow simulation and its application to wind energy based on the residual-based variational multiscale (RBVMS) method and isogeometric analysis. The RBVMS formulation and its suitability and accuracy for turbulent flow in a moving domain are presented. Particular emphasis is placed on the parallel implementation of the methodology and its scalability. Two challenging flow cases were considered: the turbulent Taylor–Couette flow and the NREL 5 MW offshore baseline wind turbine rotor at full scale. In both cases, flow quantities of interest from the simulation results compare favorably with the reference …


Thermal Conductivity Reduction Through Isotope Substitution In Nanomaterials: Predictions From An Analytical Classical Model And Nonequilibrium Molecular Dynamics Simulations, Ganesh Balasubramanian, Ishwar K. Puri, Michael C. Bohm, Frederic Leroy Jul 2011

Thermal Conductivity Reduction Through Isotope Substitution In Nanomaterials: Predictions From An Analytical Classical Model And Nonequilibrium Molecular Dynamics Simulations, Ganesh Balasubramanian, Ishwar K. Puri, Michael C. Bohm, Frederic Leroy

Ganesh Balasubramanian

We introduce an analytical model to rapidly determine the thermal conductivity reduction due to mass disorder in nanomaterials. Although this simplified classical model depends only on the masses of the different atoms, it adequately describes the changes in thermal transport as the concentrations of these atoms vary. Its predictions compare satisfactorily with nonequilibrium molecular dynamics simulations of the thermal conductivity of 14C–12C carbon nanotubes as well as with previous simulations of other materials. We present it as a simple tool to quantitatively estimate the thermal conductivity decrease that is induced by isotope substitution in various materials.


Heat Conduction Across A Solid-Solid Interface: Understanding Nanoscale Interfacial Effects On Thermal Resistance, Ganesh Balasubramanian, Ishwar K. Puri Jul 2011

Heat Conduction Across A Solid-Solid Interface: Understanding Nanoscale Interfacial Effects On Thermal Resistance, Ganesh Balasubramanian, Ishwar K. Puri

Ganesh Balasubramanian

Phonons scatter and travel ballistically in systems smaller than the phonon mean free path. At larger lengths, the transport is instead predominantly diffusive. We employ molecular dynamics simulations to describe the length dependence of the thermal conductivity. The simulations show that the interfacial thermal resistance Rk for a Si-Ge superlattice is inversely proportional to its length, but reaches a constant value as the system dimension becomes larger than the phonon mean free path. This nanoscale effect is incorporated into an accurate continuum model by treating the interface as a distinct material with an effective thermal resistance equal to Rk .


Manufacturing Self-Assembled Coatings Of Micro- And Nano-Particles By Controlled Evaporation Of Drops And Thin Films, Junfeng Xiao, Rajneesh Bhardwaj, Daniel Attinger Apr 2011

Manufacturing Self-Assembled Coatings Of Micro- And Nano-Particles By Controlled Evaporation Of Drops And Thin Films, Junfeng Xiao, Rajneesh Bhardwaj, Daniel Attinger

Daniel Attinger

The engineered deposition of self-assembled coatings of micro- and nano-particles on solid surfaces has applications in photonic crystals, optoelectronic devices, sensors, waveguides and antireflective coatings. Besides lithographic, etching or vapor deposition methods, these coatings can be self-assembled on small (


A Large Deformation, Rotation-Free, Isogeometric Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T. J. R. Hughes Mar 2011

A Large Deformation, Rotation-Free, Isogeometric Shell, D. J. Benson, Y. Bazilevs, Ming-Chen Hsu, T. J. R. Hughes

Ming-Chen Hsu

Conventional finite shell element formulations use rotational degrees of freedom to describe the motion of the fiber in the Reissner–Mindlin shear deformable shell theory, resulting in an element with five or six degrees of freedom per node. These additional degrees of freedom are frequently the source of convergence difficulties in implicit structural analyses, and, unless the rotational inertias are scaled, control the time step size in explicit analyses. Structural formulations that are based on only the translational degrees of freedom are therefore attractive. Although rotation-free formulations using C0 basis functions are possible, they are complicated in comparison to their C1 …


Experimental And Molecular Dynamics Investigation Into The Amphiphilic Nature Of Sulforhodamine B, Baris E. Polat, Shangchao Lin, Jonathan D. Mendenhall, Brett Vanveller, Robert Langer, Daniel Blankschtein Jan 2011

Experimental And Molecular Dynamics Investigation Into The Amphiphilic Nature Of Sulforhodamine B, Baris E. Polat, Shangchao Lin, Jonathan D. Mendenhall, Brett Vanveller, Robert Langer, Daniel Blankschtein

Brett VanVeller

Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions. This assumption is due to the high water solubility of SRB relative to most fluorescent probes. However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles. In fact, SRB reduces the surface tension of water by up to 23 mN/m, and the addition of SRB to an aqueous SDS solution induces …


Microbiosensors Based On Dna Modified Single-Walled Carbon Nanotube And Pt Black Nanocomposites, Jin Shi, Tae-Gon Cha, Jonathan C. Claussen, Alfred R. Diggs, Jong Hyun Choi, D. Marshall Porterfield Jan 2011

Microbiosensors Based On Dna Modified Single-Walled Carbon Nanotube And Pt Black Nanocomposites, Jin Shi, Tae-Gon Cha, Jonathan C. Claussen, Alfred R. Diggs, Jong Hyun Choi, D. Marshall Porterfield

Jonathan C. Claussen

Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result …


Electrochemical Glutamate Biosensing With Nanocube And Nanosphere Augmented Single-Walled Carbon Nanotube Networks: A Comparative Study, Jonathan C. Claussen, Mayra S. Artiles, Eric S. Mclamore, Subhashree Mohanty, Jin Shi, Jenna L. Rickus, Timothy S. Fisher, D. Marshall Porterfield Jan 2011

Electrochemical Glutamate Biosensing With Nanocube And Nanosphere Augmented Single-Walled Carbon Nanotube Networks: A Comparative Study, Jonathan C. Claussen, Mayra S. Artiles, Eric S. Mclamore, Subhashree Mohanty, Jin Shi, Jenna L. Rickus, Timothy S. Fisher, D. Marshall Porterfield

Jonathan C. Claussen

We describe two hybrid nanomaterial biosensor platforms, based on networks of single-walled carbon nanotubes (SWCNTs) enhanced with Pd nanocubes and Pt nanospheres and grown in situ from a porous anodic alumina (PAA) template. These nanocube and nanosphere SWCNT networks are converted into glutamate biosensors by immobilizing the enzyme glutamate oxidase (cross-linked with gluteraldehyde) onto the electrode surface. The Pt nanosphere/SWCNT biosensor outperformed the Pd nanocube/SWCNT biosensor and previously reported similar nanomaterial-based biosensors by amperometrically monitoring glutamate concentrations with a wide linear sensing range (50 nM to 1.6 mM) and a small detection limit (4.6 nM, 3s). These results combined with …


3d Simulation Of Wind Turbine Rotors At Full Scale. Part I: Geometry Modeling And Aerodynamics, Y. Bazilevs, Ming-Chen Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, T. E. Tezduyar Jan 2011

3d Simulation Of Wind Turbine Rotors At Full Scale. Part I: Geometry Modeling And Aerodynamics, Y. Bazilevs, Ming-Chen Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, T. E. Tezduyar

Ming-Chen Hsu

In this two-part paper we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2 we focus on the structural discretization for wind turbine blades and the details of the fluid–structure interaction computational …


Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield Jan 2011

Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield

Jonathan C. Claussen

Nascent nanofabrication approaches are being applied to reduce electrode feature dimensions from the microscale to the nanoscale, creating biosensors that are capable of working more efficiently at the biomolecular level. The development of nanoscale biosensors has been driven largely by experimental empiricism to date. Consequently, the precise positioning of nanoscale electrode elements is typically neglected, and its impact on biosensor performance is subsequently overlooked. Herein, we present a bottom-up nanoelectrode array fabrication approach that utilizes low-density and horizontally oriented single-walled carbon nanotubes (SWCNTs) as a template for the growth and precise positioning of Pt nanospheres. We further develop a computational …