Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Selected Works

2005

Cooling

Articles 1 - 1 of 1

Full-Text Articles in Entire DC Network

Unsteady Effects On Trailing Edge Cooling, G. Medic, Paul A. Durbin Apr 2005

Unsteady Effects On Trailing Edge Cooling, G. Medic, Paul A. Durbin

Paul A. Durbin

It is shown how natural and forced unsteadiness play a major role in turbine blade trailing edge cooling flows. Reynolds averaged simulations are presented for a surface jet in coflow, resembling the geometry of the pressure side breakout on a turbine blade. Steady computations show very effective cooling; however when natural-or even moreso, forced-unsteadiness is allowed, the adiabatic effectiveness decreases substantially. Streamwise vortices in the mean flow are found to be the cause of the increased heat transfer.