Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Selected Works

Terrence R Meyer

Laser pulses

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Narrow-Linewidth Megahertz-Repetition-Rate Optical Parametric Oscillator For High-Speed Flow And Combustion Diagnostics, Naibo Jiang, Walter R. Lempert, Gary L. Switzer, Terrence R. Meyer, James R. Gord Nov 2015

Narrow-Linewidth Megahertz-Repetition-Rate Optical Parametric Oscillator For High-Speed Flow And Combustion Diagnostics, Naibo Jiang, Walter R. Lempert, Gary L. Switzer, Terrence R. Meyer, James R. Gord

Terrence R Meyer

We demonstrate the ability to generate ultra-high-frequency sequences of broadly wavelength-tunable, high-intensity laser pulses using a custom-built optical parametric oscillator pumped by the thirdharmonic output of a "burst-mode" Nd:YAG laser. Burst sequences consisting of 6-10 pulses separated in time by 6-10 Îs are obtained, with average total conversion efficiency from the 355 nm pump to the near-IR signal and idler wavelengths of 33%. Typical individual pulse output energy for the signal and idler beams is in the range of 4-6 mJ, limited by the available pump energy. Line narrowing is demonstrated by means of injection seeding the idler wave using …


Broadband Coherent Anti-Stokes Raman Scattering Spectroscopy Of Nitrogen Using A Picosecond Modeless Dye Laser, Sukesh Roy, Terrence R. Meyer, James R. Gord Nov 2005

Broadband Coherent Anti-Stokes Raman Scattering Spectroscopy Of Nitrogen Using A Picosecond Modeless Dye Laser, Sukesh Roy, Terrence R. Meyer, James R. Gord

Terrence R Meyer

Broadband picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy of nitrogen is demonstrated using 145-ps pump and probe beams and a 115-ps Stokes beam with a spectral bandwidth of 5 nm. This is, to our knowledge, the first demonstration of broadband CARS using subnanosecond lasers. The short temporal envelope of the laser pulses and the broadband spectral nature of the Stokes beam will enable nonresonant-background-free, single-shot, or time-dependent spectroscopy in high-pressure or hydrocarbon-rich environments. Successful correlation of room-temperature broadband picosecond N2 CARS with a theoretical spectrum is presented.