Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Selected Works

Faculty of Engineering University of Malaya

SelectedWorks

Mechanical properties

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Mechanical Properties Of Intermetallic Compounds In Electrodeposited Multilayered Thin Film At Small Scale By Nanoindentation May 2015

Mechanical Properties Of Intermetallic Compounds In Electrodeposited Multilayered Thin Film At Small Scale By Nanoindentation

Faculty of Engineering University of Malaya

Mechanical properties of intermetallic compounds (IMCs) which were formed in electrodeposited Cu/Sn and Cu/Ni/Sn multilayered thin film have been investigated. The layers of Cu, Sn and Ni were formed by electrodeposition technique using copper pyrophosphate, tin methanesulfonic and nickel Watts baths, respectively. After synthesis, samples were subjected to high temperature aging at 150 degrees C for 168 h. Two different types of intermetallics Cu3Sn and Cu6Sn5 were formed in Cu/Sn. After adding ultra-thin layer of Ni (70 nm) in between Cu and Sn layers, (Cu, Ni)(6)Sn-5 was formed after aging at similar condition to that of Cu/Sn. Tin whisker growth …


Sintering Behaviour Of Natural Porous Hydroxyapatite Derived From Bovine Bone Mar 2015

Sintering Behaviour Of Natural Porous Hydroxyapatite Derived From Bovine Bone

Faculty of Engineering University of Malaya

The aim of this research is to study the properties of natural porous hydroxyapatite developed from bovine bone through a sintering process. Bovine bone samples were prepared and sintered in an air atmosphere at different temperatures ranging from 600 degrees C to 1000 degrees C. The sintered bodies were characterized to determine the phases present, bulk density, Ca/P ratio and Vickers hardness. In addition, the microstructural evolution of the sintered porous bodies was also examined. The results revealed that the thermal stability of the HA matrix was not disrupted and that all of the sintered bodies exhibited phase pure HA. …


Sintering Behaviour Of Natural Porous Hydroxyapatite Derived From Bovine Bone Mar 2015

Sintering Behaviour Of Natural Porous Hydroxyapatite Derived From Bovine Bone

Faculty of Engineering University of Malaya

The aim of this research is to study the properties of natural porous hydroxyapatite developed from bovine bone through a sintering process. Bovine bone samples were prepared and sintered in an air atmosphere at different temperatures ranging from 600 degrees C to 1000 degrees C. The sintered bodies were characterized to determine the phases present, bulk density, Ca/P ratio and Vickers hardness. In addition, the microstructural evolution of the sintered porous bodies was also examined. The results revealed that the thermal stability of the HA matrix was not disrupted and that all of the sintered bodies exhibited phase pure HA. …


Alternative Methods To Determine The Elastoplastic Properties Of Sintered Hydroxyapatite From Nanoindentation Testing Feb 2015

Alternative Methods To Determine The Elastoplastic Properties Of Sintered Hydroxyapatite From Nanoindentation Testing

Faculty of Engineering University of Malaya

This study introduces alternative methods to determine the elastoplastic properties of bovine-derived Hydroxyapatite (HA) porous bone graft through a set of nanoindentation tests with a Berkovich indenter. Generally, experimental data obtained from nanoindentation tests are force displacement, hardness and elastic modulus. However, to determine plastic properties such as strength coefficient and work hardening exponent of bovine HA, analytical or inverse finite element models are required. In this paper, the effect of sintering temperature on these properties of HA is studied for the range of 1000-1400 degrees C. The direct and inverse Finite Element (FE) simulation models for nanoindentation tests were …


Properties Of Zn-Bi Composite Coatings Prepared By Ionic Co-Discharge Deposition Jan 2015

Properties Of Zn-Bi Composite Coatings Prepared By Ionic Co-Discharge Deposition

Faculty of Engineering University of Malaya

Zn-Bi composite was synthesized by ionic co-discharge deposition and its properties were investigated. The results show that the Zn-Bi composite with the incorporation of Bi has a finer grain size than the pure Zn coating and improves the mechanical properties. The microhardness is increased by approximately two times simply by adding a small amount of Bi electrolyte into a Zn bath solution. A lower volume loss of the Zn-Bi composite coating compared with the pure Zn coating also indicates that the Zn-Bi coating has a better wear resistance. Link to Full-Text Articles : http://www.sciencedirect.com/science/article/pii/S1003632615635968