Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Entire DC Network

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera May 2018

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera

Theses and Dissertations

A new microdialysis sampling method and microfluidic device were developed in vitro. The method consisted of using up to four microdialysis sampling probes connected in series to evaluate the relative recovery (RR) of different model solutes methyl orange, fluorescein isothiocyanate (FITC)-dextran average mol. wt. 4,000 (FITC-4), FITC-10, FITC-20, and FITC-40. Different flow rates (0.8, 1.0, and 1.5 µL/min) were used to compare experimentally observed relative recoveries with theoretical estimations. With increasing the number of probes in series, the relative recovery increases and ~100% (99.7% ± 0.9%) relative recovery for methyl orange was obtained ...


Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn Dec 2016

Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn

Theses and Dissertations

Selective laser sintering (SLS) is one of the most popular 3D printing methods that uses a laser to pattern energy and selectively sinter powder particles to build 3D geometries. However, this printing method is plagued by slow printing speeds, high power consumption, difficulty to scale, and high overhead expense. In this research, a new 3D printing method is proposed to overcome these limitations of SLS. Instead of using a laser to pattern energy, this new method, termed selective resistive sintering (SRS), uses an array of microheaters to pattern heat for selectively sintering materials. Using microheaters offers significant power savings, significantly ...


Design, Fabrication, And Testing Of A 3d Printer Based Microfluidic System, Carlton A. Mcmullen Dec 2015

Design, Fabrication, And Testing Of A 3d Printer Based Microfluidic System, Carlton A. Mcmullen

Theses and Dissertations

A pneumatically actuated PDMS based microfluidic devices were designed and fabricated by soft-lithography. Two types of molds were fabricated out of different material for this experiment. The first mold, (device 1), was fabricated from a sheet of Polymethyl methacrylate (PMMA) material, similar to Plexiglas. The device features were micro-engraved onto the face of the material. The second mold, (device 2), was fabricated from the use of fused deposition modeling (FDM) 3D printing. The pumping efficiency of the PDMS devices was analyzed through the characterization of the micro-pumps flowrate with respect to the pumps driving pressure and the actuation frequency. Tested ...


Toward Sophisticated Controls Of Two-Phase Transport At Micro/Nano-Scale, Fanghao Yang Jan 2013

Toward Sophisticated Controls Of Two-Phase Transport At Micro/Nano-Scale, Fanghao Yang

Theses and Dissertations

Through the use of latent heat evaporating, flow boiling in microchannels offers new opportunities to enable high efficient heat and mass transport for a wide range of emerging applications such as high power electric/electronic/optical cooling, compact heat exchangers and reactors. However, flow boiling in microchannels is hampered by several severe constraints such as bubble confinement (e.g., slug flow), viscosity and surface tension force-dominated flows, which result in unpredictable flow pattern transitions and tend to induce severe flow boiling instabilities (i.e. low-frequency and large magnitude flows) and suppress evaporation and convection.

In this dissertation, three novel micro ...


Development Of Mems-Based Corrosion Sensor, Feng Pan Dec 2012

Development Of Mems-Based Corrosion Sensor, Feng Pan

Theses and Dissertations

This research is to develop a MEMS-based corrosion sensor, which is used for monitoring uniform, galvanic corrosion occurring in infrastructures such as buildings, bridges. The corrosion sensor is made up of the composite of micro/nano metal particles with elastomers. The mechanism of corrosion sensor is based on the mass transport of corrosive species through the sensor matrix. When the metal particles in the matrix corrode, the electrical resistivity of the material increases due to increasing particle resistances or reduction of conducting pathways. The corrosion rate can be monitored by detecting the resistivity change in sensing elements. The life span ...


Design And Testing Of A Biological Microelectromechanical System For The Injection Of Thousands Of Cells Simultaneously, Gregory Herlin Teichert Jul 2012

Design And Testing Of A Biological Microelectromechanical System For The Injection Of Thousands Of Cells Simultaneously, Gregory Herlin Teichert

Theses and Dissertations

The ability to inject DNA and other foreign particles into cells, both germ cells (e.g. to produce transgenic animals) and somatic cells (e.g. for gene therapy), is a powerful tool in genetic research. Nanoinjection is a method of DNA delivery that combines mechanical and electrical methods. It has proven to have higher cell viability than traditional microinjection, resulting in higher integration per injected embryo. The nanoinjection process can be performed on thousands of cells simultaneously using an array of microneedles that is inserted into a monolayer of cells. This thesis describes the needle array design requirements and the ...


Mechanical Properties And Mems Applications Of Carbon-Infiltrated Carbon Nanotube Forests, Walter C. Fazio May 2012

Mechanical Properties And Mems Applications Of Carbon-Infiltrated Carbon Nanotube Forests, Walter C. Fazio

Theses and Dissertations

This work explores the use of carbon-infiltrated carbon nanotube (CI-CNT) forests as a material for fabricating compliant MEMS devices. The impacts of iron catalyst layer thickness and carbon infiltration time are examined. An iron layer of 7nm or 10nm with an infiltration time of 30 minutes produces CI-CNT best suited for compliant applications. Average maximum strains of 2% and 2.48% were observed for these parameters. The corresponding elastic moduli were 5.4 GPa and 4.1 GPa, respectively. A direct comparison of similar geometry suggested CI-CNT is 80% more flexible than single-crystal silicon. A torsional testing procedure provided an ...


Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten Jun 2011

Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten

Theses and Dissertations

A novel method for charged macromolecule delivery, called nanoinjection, has been developed at Brigham Young University. Nanoinjection combines micro-fabrication technology, mechanism design, and nano-scale electrical phenomenon to transport exogenous DNA across cell membranes on a nano-featured lance. DNA is electrically accumulated on the lance, precision movements of microelectromechanical systems (MEMS) physically insert the lance into cell, and DNA is electrically released from the lance into the cell. Penetration into the cell is achieved through a two-phase, self-reconfiguring metamorphic mechanism. The surface-micromachined, metamorphic nanoinjector mechanism elevates the lance above the fabrication substrate, then translates in-plane at a constant height as the ...


Modeling, Design, And Testing Of An Underwater Microactuation System Using A Standard Mems Foundry Process, Gregory L. Holst Apr 2011

Modeling, Design, And Testing Of An Underwater Microactuation System Using A Standard Mems Foundry Process, Gregory L. Holst

Theses and Dissertations

This work presents the modeling, design, and testing of an underwater microactuation system. It is composed of several thermomechanical in-plane microactuators (TIM) integrated with a ratchet system to provide long displacements and high forces to underwater microelectromechanical systems (MEMS). It is capable of actuating a 200µN load 110µm. It is a two-layer silicon MEMS device fabricated with a MEMS fabrication process, PolyMUMPS. This work also shows the development of an elliptic integral model to analyze the compliant fixed-guided beams in the TIM and gives new insight into the buckling behavior, reaction forces, and displacement of the beams. The derivation, verification ...


Modeling And Testing Of Dna Motion For Nanoinjection, Regis Agenor David Dec 2010

Modeling And Testing Of Dna Motion For Nanoinjection, Regis Agenor David

Theses and Dissertations

A new technique, called nanoinjection, is being developed to insert foreign DNA into a living cell. Such DNA transfection is commonly used to create transgenic organisms vital to the study of genetics, immunology, and many other biological sciences. In nanoinjection, DNA, which has a net negative charge, is electrically attracted to a micromachined lance. The lance then pierces the cell membranes, and the voltage on the lance is reversed, repelling the DNA into the cell. It is shown that DNA motion is strongly correlated to ion transport through a process called electrophoresis. Gel electrophoresis is used to move DNA using ...


Piezoresistive Models For Polysilicon With Bending Or Torsional Loads, Gerrit T. Larsen Aug 2009

Piezoresistive Models For Polysilicon With Bending Or Torsional Loads, Gerrit T. Larsen

Theses and Dissertations

This thesis presents new models for determining piezoresistive response in long, thin polysilicon beams with either axial and bending moment inducing loads or torsional loads. Microelectromechanical (MEMS) test devices and calibration methods for finding the piezoresistive coefficients are also presented for both loading conditions. For axial and bending moment inducing loads, if the piezoresistive coefficients are known, the Improved Piezoresistive Flexure Model (IPFM) is used to find the new resistance of a beam under stress. The IPFM first discretizes the beam into small volumes represented by resistors. The stress that each of these volumes experiences is calculated, and the stress ...


Design And Testing Of A Pumpless Microelectromechanical System Nanoinjector, Quentin Theodore Aten Nov 2008

Design And Testing Of A Pumpless Microelectromechanical System Nanoinjector, Quentin Theodore Aten

Theses and Dissertations

A deeper understanding of human development and disease is made possible partly through the study of genetically modified model organisms, such as the common mouse (Mus musculus). By genetically modifying such model organisms, scientists can activate, deactivate, or highlight particular characteristics. A genetically modified animal is generated by adding exogenous (foreign) genetic material to one or more embryonic cells at their earliest stages of development. Frequently, this exogenous genetic material consists of specially engineered DNA, which is introduced into a fertilized egg cell (zygote). When successfully introduced into the zygote, the exogenous DNA will be incorporated into the cell's ...


Multi-Physics Modeling And Calibration For Self-Sensing Of Thermomechanical In-Plane Microactuators, Kendall B. Teichert Jul 2008

Multi-Physics Modeling And Calibration For Self-Sensing Of Thermomechanical In-Plane Microactuators, Kendall B. Teichert

Theses and Dissertations

As technology advances and engineering capabilities improve, more research has focused on microscopic possibilities. Microelectromechanical systems (MEMS) is one area that has received much attention recently. Within MEMS much research has focused on sensing and actuation. This thesis presents work on a particular actuator of interest, the thermomechanical in-plane microactuator (TIM). Recent work has shown the possibility of a novel approach of sensing mechanical outputs of the TIM without ancillary sensors. This sensing approach exploits the piezoresistive property of silicon. However, to implement this approach a full model of the TIM would need to be obtained to describe the physics ...


Characterizing The Three-Dimensional Behavior Of Bistable Micromechanisms, Brian B. Cherry Feb 2008

Characterizing The Three-Dimensional Behavior Of Bistable Micromechanisms, Brian B. Cherry

Theses and Dissertations

Compliant bistable micromechanisms have been proposed for use in applications such as switches, relays, shutters, and sensing arrays. Unpublished laboratory testing suggests that off-axis forces may affect the bistable nature of fully compliant bistable micromechanisms (FCBMs). The actuation forces required to snap the FCBM from one stable equilibrium position to another can be altered if the off-axis forces are applied to the mechanism during transition between stable positions. Understanding the three-dimensional characteristics of these mechanisms and the effect of eccentric loading conditions would be helpful in design and analysis of FCBMs. Two 3-D FEA models were developed for analysis and ...


Integrated Piezoresistive Sensing For Feedback Control Of Compliant Mems, Robert K. Messenger Oct 2007

Integrated Piezoresistive Sensing For Feedback Control Of Compliant Mems, Robert K. Messenger

Theses and Dissertations

Feedback control of MEMS devices has the potential to significantly improve device performance and reliability. One of the main obstacles to its broader use is the small number of on-chip sensing options available to MEMS designers. A method of using integrated piezoresistive sensing is proposed and demonstrated as another option. Integrated piezoresistive sensing utilizes the inherent piezoresistive property of polycrystalline silicon from which many MEMS devices are fabricated. As compliant MEMS structures flex to perform their functions, their resistance changes. That resistance change can be used to transduce the structures' deflection into an electrical signal. This dissertation addresses three topics ...


The Piezoresistive Effect In Microflexures, Gary K. Johns Dec 2006

The Piezoresistive Effect In Microflexures, Gary K. Johns

Theses and Dissertations

The objective of this research is to present a new model for predicting the piezoresistive effect in microflexures experiencing bending stresses. A linear model describing piezoresistivity exists for members in pure tension and compression. Extensions of this model to more complex loading conditions do not match experimental results. An accurate model of piezoresistivity in complex loading conditions would expand the design possibilities of piezoresistive devices. A new model to predict piezoresistive effects in tension, compression, and more complex loading conditions is proposed. The focus of this research is to verify a unidirectional form of this proposed model for microflexures in ...


Design Of Piezoresistive Mems Force And Displacement Sensors, Tyler Lane Waterfall Sep 2006

Design Of Piezoresistive Mems Force And Displacement Sensors, Tyler Lane Waterfall

Theses and Dissertations

MEMS (MicroElectroMechanical Systems) sensors are used in acceleration, flow, pressure and force sensing applications on the micro and macro levels. Much research has focused on improving sensor precision, range, reliability, and ease of manufacture and operation. One exciting possibility for improving the capability of micro sensors lies in exploiting the piezoresistive properties of silicon, the material of choice in many MEMS fabrication processes. Piezoresistivity—the change of electrical resistance due to an applied strain—is a valuable material property of silicon due to its potential for high signal output and on-chip and feedback-control possibilities. However, successful design of piezoresistive micro ...


Piezoresistive Sensing Of Bistable Micro Mechansim State, Jeffrey K. Anderson Nov 2005

Piezoresistive Sensing Of Bistable Micro Mechansim State, Jeffrey K. Anderson

Theses and Dissertations

The objective of this work is to demonstrate the feasibility of on-chip sensing of bistable mechanism state using the piezoresistive properties of polysilicon, thus eliminating the need for electrical contacts. Changes in position are detected by observing changes in resistance across the mechanism. Sensing the state of bistable mechanisms is critical in their various applications. The research in this thesis advances the modeling techniques of MEMS devices which use piezoresistivity for position sensing. A fully compliant bistable micro mechanism was designed, fabricated, and tested to demonstrate the feasibility of this sensing technique. Testing results from two fabrication processes, Fairchild's ...


Ortho-Planar Mechanisms For Microelectromechanical Systems, Craig P. Lusk Jul 2005

Ortho-Planar Mechanisms For Microelectromechanical Systems, Craig P. Lusk

Theses and Dissertations

A method for representing the design space of ortho-planar mechanisms has been developed. The method is based on the Theorem of Equality of Orientation Set Measures (TEOSM) which allows mechanisms to be represented by points in an abstract space. The method is first developed for single loop planar folded mechanisms with revolute joints, and later extended to mechanisms with prismatic joints and to spherical folded mechanisms. Functions which assign a value to each point in design space can be used to describe classes of mechanisms and evaluate their utility for MEMS design. Additionally, this work introduces the use of spherical ...


Electrothermomechanical Modeling Of A Surface-Micromachined Linear Displacement Microactuator, Christian D. Lott Mar 2005

Electrothermomechanical Modeling Of A Surface-Micromachined Linear Displacement Microactuator, Christian D. Lott

Theses and Dissertations

The electrothermomechanical characteristics of an electrically-heated polycrystallinesilicon microactuator are explored. Using finite-difference techniques, an electrothermal model based on the balance of heat dissipation and heat losses is developed. For accurate simulation, the relevant temperature dependent properties from the microactuator material are included in the model. The electrothermal model accurately predicts the steady-state power required to hold position, and the energy consumed during the thermal transient. Thermomechanical models use the predictions of temperature from the electrothermal solution to calculate displacement and force from pseudo-rigid-body approximations and commercial finite-element code. The models are verified by comparing experimental data to simulation results of ...


Dual-Stage Thermally Actuated Surface-Micromachined Nanopositioners, Neal B. Hubbard Mar 2005

Dual-Stage Thermally Actuated Surface-Micromachined Nanopositioners, Neal B. Hubbard

Theses and Dissertations

Nanopositioners have been developed with electrostatic, piezoelectric, magnetic, thermal, and electrochemical actuators. They move with as many as six degrees of freedom; some are composed of multiple stages that stack together. Both macro-scale and micro-scale nanopositioners have been fabricated. A summary of recent research in micropositioning and nanopositioning is presented to set the background for this work. This research project demonstrates that a dual-stage nanopositioner can be created with microelectromechanical systems technology such that the two stages are integrated on a single silicon chip. A nanopositioner is presented that has two stages, one for coarse motion and one for fine ...


Simulation-Based Design Under Uncertainty For Compliant Microelectromechanical Systems, Jonathan W. Wittwer Mar 2005

Simulation-Based Design Under Uncertainty For Compliant Microelectromechanical Systems, Jonathan W. Wittwer

Theses and Dissertations

The high cost of experimentation and product development in the field of microelectromechanical systems (MEMS) has led to a greater emphasis on simulation-based design for increasing first-pass design success and reliability. The use of compliant or flexible mechanisms can help eliminate friction, wear, and backlash, but compliant MEMS are sensitive to variations in material properties and geometry. This dissertation proposes approaches for design stage uncertainty analysis, model validation, and robust optimization of nonlinear compliant MEMS to account for critical process uncertainties including residual stress, layer thicknesses, edge bias, and material stiffness. Methods for simulating and mitigating the effects of non-idealities ...


Fully Compliant Tensural Bistable Mechanisms (Ftbm) With On-Chip Thermal Actuation, Daniel L. Wilcox Jul 2004

Fully Compliant Tensural Bistable Mechanisms (Ftbm) With On-Chip Thermal Actuation, Daniel L. Wilcox

Theses and Dissertations

The Fully compliant Tensural Bistable Mechanism (FTBM) class is introduced. The class consists of fully compliant linear bistable mechanisms that achieve much of their displacement and bistable behavior through tension loading of compliant segments. Multiple topologies of designs arising from the FTBM class were designed using a finite element analysis (FEA) model with optimization. In a coupled design approach, thermal actuators were optimized to the force and displacement requirements of the bistable mech-anisms, and selected FTBM devices were combined in switching systems with the result-ing Thermomechanical In-plane Microactuators (TIMs) and Amplified Thermomechanical In-plane Microactuators (ATIMs). Successful on-chip actuation was demonstrated ...


Modeling And Control Of Surface Micromachined Thermal Actuators, Robert K. Messenger May 2004

Modeling And Control Of Surface Micromachined Thermal Actuators, Robert K. Messenger

Theses and Dissertations

A model that accurately describes the transient and steady-state response of thermal microactuators is desirable to provide guidance for design and operation. However, modeling the full response of thermal actuators is challenging due to the temperature-dependent material properties and nonlinear deformations that must be included to obtain accurate results. To meet these challenges a three-dimensional multi-physics nonlinear finite-element model was developed using commercial code. The Thermomechanical Inplane Microactuator (TIM) was chosen as a candidate application to validate the model. TIMs were fabricated using the SUMMiT V™ process and their response was measured using a high-speed camera. The TIMs were modeled ...


Analysis And Design Of Surface Micromachined Micromanipulators For Out-Of-Plane Micropositioning, Kimberly A. Jensen Jul 2003

Analysis And Design Of Surface Micromachined Micromanipulators For Out-Of-Plane Micropositioning, Kimberly A. Jensen

Theses and Dissertations

This thesis introduces two ortho-planar MEMS devices that can be used to position microcomponents: the XZ Micropositioning Mechanism and the XYZ Micromanipulator. The displacement and force relationships are presented. The devices were fabricated using surface micromachining processes and the resulting mechanisms were tested. A compliant XYZ Micromanipulator was also designed to reduce backlash and binding. In addition, several other MEMS positioners were fabricated and tested: the Micropositioning Platform Mechanism (MPM), the Ortho-planar Twisting Micromechanism (OTM), and the Ortho-planar Spring Micromechanism (OSM).


Identification Of Macro- And Micro-Compliant Mechanism Configurations Resulting In Bistable Behavior, Brian D. Jensen Jun 2003

Identification Of Macro- And Micro-Compliant Mechanism Configurations Resulting In Bistable Behavior, Brian D. Jensen

Theses and Dissertations

The purpose of this research is to identify the configurations of several mechanism classes which result in bistable behavior. Bistable mechanisms have use in many applications, such as switches, clasps, closures, hinges, and so on. A powerful method for the design of such mechanisms would allow the realization of working designs much more easily than has been possible in the past. A method for the design of bistable mechanisms is especially needed for micro-electro-mechanical systems (MEMS) because fabrication and material constraints often prevent the use of simple, well-known bistable mechanism configurations. In addition, this knowledge allows designers to take advantage ...


A Self-Retracting Fully-Compliant Bistable Micromechanism, Nathan D. Masters Jun 2003

A Self-Retracting Fully-Compliant Bistable Micromechanism, Nathan D. Masters

Theses and Dissertations

The purpose of this research is to present a class of Self-Retracting Fully-compliant Bistable Micromechanisms (SRFBM). Fully-compliant mechanisms are needed to overcome the inherent limitations of microfabricated pin joints, especially in bistable mechanisms. The elimination of the clearances associated with pin joints will allow more efficient bistable mechanisms with smaller travel. Small travel, in a linear path facilitates integration with efficient on-chip actuators. Tensural pivots are developed and used to deal with the compressive loading to which the mechanism is subject. SRFBM are modeled using the Pseudo-Rigid-Body Model and finite element analysis. Suitable configurations of the SRFBM concept have been ...


Development Of In-Plane Compliant Bistable Microrelays, Troy Alan Gomm Jun 2003

Development Of In-Plane Compliant Bistable Microrelays, Troy Alan Gomm

Theses and Dissertations

Bistable microrelays have many possible applications and have the potential to reduce the size, weight, power consumption, and cost of products in which they are used. This research outlines the current state of microrelays, presents three new compliant bistable micromechanisms, and characterizes their performance as microrelays. The characterization includes a treatment of a new force-tester, a preliminary contact resistance study, contact-force measurements, switching time measurements, insertion loss, AC isolation, breakdown voltage, and DC isolation. This document also includes recommendations for further research.


The Pseudo-Rigid-Body Model For Dynamic Predictions Of Macro And Micro Compliant Mechanisms, Scott Marvin Lyon Apr 2003

The Pseudo-Rigid-Body Model For Dynamic Predictions Of Macro And Micro Compliant Mechanisms, Scott Marvin Lyon

Theses and Dissertations

This work discusses the dynamic predictions of compliant mechanisms using the Pseudo-Rigid-Body model (PRBM). In order to improve the number of mechanisms that can be modeled, this research develops and identifies several key concepts in the behavior of beam segments where both ends are fixed to a rigid body (fixed-fixed flexible segments). A model is presented, and several examples are discussed. The dynamic behavior of several compliant segments is predicted using the PRBM and the results are compared to finite element analysis and experimental results. Details are presented as to the transient behavior of a typical uniform rectangular cross section ...


On-Chip Actuation Of Compliant Bistable Micro-Mechanisms, Michael S. Baker Mar 2003

On-Chip Actuation Of Compliant Bistable Micro-Mechanisms, Michael S. Baker

Theses and Dissertations

Two compliant bistable micro-mechanisms have been developed which can be switched in either direction using on-chip thermal actuation. The energy storage and bistable behavior of the mechanisms are achieved through the elastic deflection of compliant segments. The pseudo-rigid-body model was used for the compliant mechanism design, and for analysis of the large-deflection flexible segments. To achieve on-chip actuation, the mechanism designs were optimized to reduce their required rotation, allow them to be switched using linear-motion thermal actuators. The modeling theory and analysis are presented for several design iterations. Each iteration was successfully fabricated and tested using either the MUMPs or ...