Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Evaluation Of The Accuracy Of Different Pv Estimation Models And The Effect Of Dust Cleaning: Case Study A 103 Mw Pv Plant In Jordan, Loiy Al-Ghussain, Moath Abu Subaih, Andres Annuk Jan 2022

Evaluation Of The Accuracy Of Different Pv Estimation Models And The Effect Of Dust Cleaning: Case Study A 103 Mw Pv Plant In Jordan, Loiy Al-Ghussain, Moath Abu Subaih, Andres Annuk

Mechanical Engineering Graduate Research

The estimation of PV production has been widely investigated previously, where many empirical models have been proposed to account for wind and soiling effects for specific locations. However, the performance of these models varies among the investigated sites. Hence, it is vital to assess and evaluate the performance of these models and benchmark them against the common PV estimation model that accounts only for the ambient temperature. Therefore, this study aims to evaluate the accuracy and performance of four empirical wind models considering the soiling effect, and compare them to the standard model for a 103 MW PV plant in …


Free Vibration Analysis Of Rotating Beams Based On The Modified Couple Stress Theory And Coupled Displacement Field, Alireza Babaei, Masoud Arabghahestani Apr 2021

Free Vibration Analysis Of Rotating Beams Based On The Modified Couple Stress Theory And Coupled Displacement Field, Alireza Babaei, Masoud Arabghahestani

Mechanical Engineering Graduate Research

In this paper, transverse vibration analysis of rotating micro-beam is investigated based on the modified couple stress theory. The simply-supported micro-beam is modeled utilizing Euler-Bernoulli and Timoshenko beam theories. The system is rotating around a fixed axis perpendicular to the axial direction of the beam. For the first time, displacement filed is introduced as a coupled field to the translational field. In other words, the mentioned rotational displacement field is expressed as a proportional function of translational displacement field using first (axial), second (lateral), and third (angular or rotational) velocity factors. Utilizing Hamilton’s approach as a variational method, dynamic-vibration equations …


A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed Apr 2021

A Demand-Supply Matching-Based Approach For Mapping Renewable Resources Towards 100% Renewable Grids In 2050, Loiy Al-Ghussain, Adnan Darwish Ahmad, Ahmad M. Abubaker, Mohammad Abujubbeh, Abdulaziz Almalaq, Mohamed A. Mohamed

Mechanical Engineering Graduate Research

Recently, many renewable energy (RE) initiatives around the world are based on general frameworks that accommodate the regional assessment taking into account the mismatch of supply and demand with pre-set goals to reduce energy costs and harmful emissions. Hence, relying entirely on individual assessment and RE deployment scenarios may not be effective. Instead, developing a multi-faceted RE assessment framework is vital to achieving these goals. In this study, a regional RE assessment approach is presented taking into account the mismatch of supply and demand with an emphasis on Photovoltaic (PV) and wind turbine systems. The study incorporates mapping of renewable …


An Advanced Machine Learning Based Energy Management Of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand, Tianze Lan, Kittisak Jermsittiparsert, Sara T. Al-Rashood, Mostafa Rezaei, Loiy Al-Ghussain, Mohammed A. Mohammed Jan 2021

An Advanced Machine Learning Based Energy Management Of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand, Tianze Lan, Kittisak Jermsittiparsert, Sara T. Al-Rashood, Mostafa Rezaei, Loiy Al-Ghussain, Mohammed A. Mohammed

Mechanical Engineering Graduate Research

Renewable microgrids are new solutions for enhanced security, improved reliability and boosted power quality and operation in power systems. By deploying different sources of renewables such as solar panels and wind units, renewable microgrids can enhance reducing the greenhouse gasses and improve the efficiency. This paper proposes a machine learning based approach for energy management in renewable microgrids considering a reconfigurable structure based on remote switching of tie and sectionalizing. The suggested method considers the advanced support vector machine for modeling and estimating the charging demand of hybrid electric vehicles (HEVs). In order to mitigate the charging effects of HEVs …


Clinical Evaluation Of Respiratory Rate Measurements On Copd (Male) Patients Using Wearable Inkjet-Printed Sensor, Ala'aldeen Al-Halhouli, Loiy Al-Ghussain, Osama Khallouf, Alexander Rabadi, Jafar Alawadi, Haipeng Liu, Khaled Al Oweidat, Fei Chen, Dingchang Zheng Jan 2021

Clinical Evaluation Of Respiratory Rate Measurements On Copd (Male) Patients Using Wearable Inkjet-Printed Sensor, Ala'aldeen Al-Halhouli, Loiy Al-Ghussain, Osama Khallouf, Alexander Rabadi, Jafar Alawadi, Haipeng Liu, Khaled Al Oweidat, Fei Chen, Dingchang Zheng

Mechanical Engineering Graduate Research

Introduction: Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease that causes long-term breathing problems. The reliable monitoring of respiratory rate (RR) is very important for the treatment and management of COPD. Based on inkjet printing technology, we have developed a stretchable and wearable sensor that can accurately measure RR on normal subjects. Currently, there is a lack of comprehensive evaluation of stretchable sensors in the monitoring of RR on COPD patients. We aimed to investigate the measurement accuracy of our sensor on COPD patients. Methodology: Thirty-five patients (Mean ± SD of age: 55.25 ± 13.76 years) in different stages …


Clinical Evaluation Of Stretchable And Wearable Inkjet-Printed Strain Gauge Sensor For Respiratory Rate Monitoring At Different Body Postures, Ala’Aldeen Al-Halhouli, Loiy Al-Ghussain, Saleem El Bouri, Fuad Habash, Haipeng Liu, Dingchang Zheng Jan 2020

Clinical Evaluation Of Stretchable And Wearable Inkjet-Printed Strain Gauge Sensor For Respiratory Rate Monitoring At Different Body Postures, Ala’Aldeen Al-Halhouli, Loiy Al-Ghussain, Saleem El Bouri, Fuad Habash, Haipeng Liu, Dingchang Zheng

Mechanical Engineering Graduate Research

Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement which is difficult and still under investigation. The present study investigates and evaluates a stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously by detecting the respiratory volume change in the chest area. As the volume change could cause different strain changes at different body postures, this study aims to investigate the accuracy of the IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects (mean ± SD of age: 24 ± 1.22 years). The RR was …


Optimization Of Geometry Parameters Of Inkjet-Printed Silver Nanoparticle Traces On Pdms Substrates Using Response Surface Methodology, Jumana Abu-Khalaf, Loiy Al-Ghussain, Ahmad Nadi, Razan Saraireh, Abdulrahman Rabayah, Safwan Altarazi, Ala’Aldeen Al-Halhouli Oct 2019

Optimization Of Geometry Parameters Of Inkjet-Printed Silver Nanoparticle Traces On Pdms Substrates Using Response Surface Methodology, Jumana Abu-Khalaf, Loiy Al-Ghussain, Ahmad Nadi, Razan Saraireh, Abdulrahman Rabayah, Safwan Altarazi, Ala’Aldeen Al-Halhouli

Mechanical Engineering Graduate Research

Inkjet printing is an emerging technology with key advantages that make it suitable for the fabrication of stretchable circuits. Specifically, this process is cost-effective and less complex compared to conventional fabrication technologies. Inkjet printing has several process and geometry parameters that significantly affect the electromechanical properties of the printed circuits. This study aims to optimize the geometry parameters of inkjet-printed silver nanoparticle traces on plasma-treated polydimethylsiloxane (PDMS) substrates. The optimization process was conducted for two printed shapes, namely straight line and horseshoe patterns. The examined input factors for the straight line traces were: the number of inkjet-printed layers and line …


Fabrication And Evaluation Of A Novel Non-Invasive Stretchable And Wearable Respiratory Rate Sensor Based On Silver Nanoparticles Using Inkjet Printing Technology, Ala’Aldeen Al-Halhouli, Loiy Al-Ghussain, Saleem El Bouri, Haipeng Liu, Dingchang Zheng Sep 2019

Fabrication And Evaluation Of A Novel Non-Invasive Stretchable And Wearable Respiratory Rate Sensor Based On Silver Nanoparticles Using Inkjet Printing Technology, Ala’Aldeen Al-Halhouli, Loiy Al-Ghussain, Saleem El Bouri, Haipeng Liu, Dingchang Zheng

Mechanical Engineering Graduate Research

The respiration rate (RR) is a key vital sign that links to adverse clinical outcomes and has various important uses. However, RR signals have been neglected in many clinical practices for several reasons and it is still difficult to develop low-cost RR sensors for accurate, automated, and continuous measurement. This study aims to fabricate, develop and evaluate a novel stretchable and wearable RR sensor that is low-cost and easy to use. The sensor is fabricated using the soft lithography technique of polydimethylsiloxane substrates (PDMS) for the stretchable sensor body and inkjet printing technology for creating the conductive circuit by depositing …