Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Brigham Young University

Compliant mechanism

Articles 1 - 18 of 18

Full-Text Articles in Entire DC Network

Changes In The Mechanical Performance Of An Ortho-Planar Spring After Aging Tests, Lucas F. L. Santos, Larry L. Howell, Jose J. R. D’Almeida Feb 2023

Changes In The Mechanical Performance Of An Ortho-Planar Spring After Aging Tests, Lucas F. L. Santos, Larry L. Howell, Jose J. R. D’Almeida

Faculty Publications

This paper analyzed an ortho-planar spring (OPS) compliant mechanism and evaluated its mechanical performance after hygrothermal and ultraviolet radiation aging tests. The aging analysis performed here addresses the performance of compliant mechanisms after aging processes which can help inform the design of future compliant mechanisms. ASTM D638 tensile test type I samples were also submitted to aging to serve as a comparison for OPS samples. The samples were submitted to three different kinds of aging conditions, namely water immersion, oil immersion, and ultraviolet radiation. In conclusion, tensile samples showed significant statistical changes in Young's modulus and elongation at break, whereas …


Symmetric Equations For Evaluating Maximum Torsion Stress Of Rectangular Beams In Compliant Mechanisms, Guimin Chen, Larry L. Howell Feb 2023

Symmetric Equations For Evaluating Maximum Torsion Stress Of Rectangular Beams In Compliant Mechanisms, Guimin Chen, Larry L. Howell

Faculty Publications

There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the cross-section (i.e.,the thickness and the width). After reviewing the available equations, two thickness-to-width ratio independent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum torsion stress

of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional joints are analyzed and some useful design insights are obtained. These equations, together with the previous work on symmetric equations …


Symmetric Equations For Evaluating Maximum Torsion Stress Of Rectangular Beams In Compliant Mechanisms, Guimin Chen, Larry L. Howell Feb 2018

Symmetric Equations For Evaluating Maximum Torsion Stress Of Rectangular Beams In Compliant Mechanisms, Guimin Chen, Larry L. Howell

Faculty Publications

There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the cross-section (i.e., the thickness and the width). After reviewing the available equations, two thickness-to-width ratio independent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum torsion stress of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional joints are analyzed and some useful design insights are obtained. These equations, together with the previous work on symmetric …


Design And Analysis Of Two Compliant Mechanism Designs For Use In Minimally Invasive Surgical Instruments, Jason Lon Dearden Jun 2016

Design And Analysis Of Two Compliant Mechanism Designs For Use In Minimally Invasive Surgical Instruments, Jason Lon Dearden

Theses and Dissertations

Minimally invasive surgery (MIS) has several advantages over traditional methods. Scaling MIS instruments to smaller sizes and increasing their performance will enable surgeons to offer new procedures to a wider range of patients. In this work, two compliant mechanism-based minimally invasive surgical instrument wrist or gripper mechanisms are designed and analyzed.The cylindrical cross-axis flexural pivot (CCAFP) is a single-degree-of-freedom wrist mechanism that could be combined with existing gripper mechanisms to create a multi-degree-of freedom instrument. The simplicity of the CCAFP mechanism facilitates analysis and implementation. The flexures of the CCAFP are integral with the instrument shaft, enabling accessories to be …


Flex-16: A Large-Displacement Monolithic Compliant Rotational Hinge, Robert Mcintyre Fowler, Alex Maselli, Peter Pluimers, Spencer P. Magleby, Larry L. Howell Dec 2014

Flex-16: A Large-Displacement Monolithic Compliant Rotational Hinge, Robert Mcintyre Fowler, Alex Maselli, Peter Pluimers, Spencer P. Magleby, Larry L. Howell

Faculty Publications

This paper describes the design, analysis, and testing of a large-displacement monolithic compliant rotational hinge, called the Flex-16. The Flex-16 achieves 90 of rotation from monolithic construction and is aimed for application as a compliant satellite deployment hinge. Five prototypes were fabricated from three different materials (polypropylene, titanium, and a carbon nanotube framework) on two different size scales (macro and micro). A parametric finite element model was created to rapidly analyze a variety of design identified during a configuration study. Prototypes were tested for their ability to reach 90 of rotation without failure or self collision, and for their nonlinear …


Elastic Energy Absorption Via Compliant Corrugations, Sean S. Tolman Jul 2014

Elastic Energy Absorption Via Compliant Corrugations, Sean S. Tolman

Theses and Dissertations

Elastic absorption of kinetic energy and distribution of impact forces are required in many applications. This may be achieved through the use of compliant corrugations. An innovative padding concept is investigated for such applications. Also, recent attention given to the potential for using origami in engineering applications may provide new corrugation configurations that are advantageous for energy absorption and force distribution. This work explores three areas related to these concepts.First, the parameters of a compliant, corrugated padding concept are investigated using Finite Element Analyses (FEA) and physical testing. The shape of the corrugation cross section is explored as well as …


Design Exploration And Analysis Of Carbon-Infiltrated Carbon Nanotube Vascular Stents, Darrell John Skousen Sep 2013

Design Exploration And Analysis Of Carbon-Infiltrated Carbon Nanotube Vascular Stents, Darrell John Skousen

Theses and Dissertations

The purpose of this research was to design, develop, and test coronary stent designs composed of carbon-infiltrated carbon nanotubes (CI-CNTs). Coronary stents currently have two major complications: restenosis and thrombosis. CI-CNT stents have potential to address both of these issues, and therefore may provide improved clinical outcomes. CI-CNT stent geometry is patterned using high-resolution photolithography that provide advantages in design possibilities.To develop a coronary stent, a standard design process was followed including: background, design specifications, concept generation, development, analysis, and testing. Background research was first completed and general design specifications for coronary stent performance were compiled. Multiple design concepts were …


An Exploration Of Carbon-Filled Carbon Nanotubes As A Potential Material In Coronary Stents, Kristopher Neil Jones May 2013

An Exploration Of Carbon-Filled Carbon Nanotubes As A Potential Material In Coronary Stents, Kristopher Neil Jones

Theses and Dissertations

The purpose of this research is to explore the potential of using carbon-infiltrated carbon nanotubes (CI-CNT) as a material for coronary artery stents. Stents are commonly fabricated from metal, which may not perform as well as many polymers and ceramics in biomedical applications. Pyrolytic carbon, a ceramic, is currently used in medical implant devices due to its preferrable biocompatibility properties. Micro-patterned pyrolytic carbon devices can be created by growing carbon nanotubes, and then filling the space between with amorphous carbon via chemical vapor deposition. We prepared multiple samples of two different planar stent-like flexible geometries and smaller cubic structures out …


The Application Of Origami To The Design Of Lamina Emergent Mechanisms (Lems) With Extensions To Collapsible, Compliant And Flat-Folding Mechanisms, Holly Greenberg Apr 2012

The Application Of Origami To The Design Of Lamina Emergent Mechanisms (Lems) With Extensions To Collapsible, Compliant And Flat-Folding Mechanisms, Holly Greenberg

Theses and Dissertations

Lamina emergent mechanisms (LEMs) are a subset of compliant mechanisms which are fabricated from planar materials; use compliance, or flexibility of the material, to transfer energy; and have motion that emerges out of the fabrication plane. LEMs provide potential design advantages by reducing the number of parts, reducing cost, reducing weight, improving recyclability, increasing precision, and eliminating assembly, to name a few. However, there are inherent design and modeling challenges including complexities in large, non-linear deflections, singularities that exist when leaving the planar state, and the coupling of material properties and geometry in predicting mechanism behavior. This thesis examines the …


Evaluation And Development Of Actuators For Lamina Emergent Mechanisms With Emphasis On Flat Solenoids, Justin Durant Black Apr 2012

Evaluation And Development Of Actuators For Lamina Emergent Mechanisms With Emphasis On Flat Solenoids, Justin Durant Black

Theses and Dissertations

Lamina emergent mechanisms (LEMs) can provide a way to meet the demand for more compact and inexpensive mechanisms. Previous research has developed LEM designs and identified applications for them, but many applications would benefit from suitable actuation techniques. This thesis presents the design considerations and a variety of applicable methods for internal and external LEM actuation in the macro scale. Integrated LEM actuator possibilities have been identified, each with its advantages and disadvantages depending on the application. Shape memory alloys are especially compatible with LEMs. Traditional actuators have also been discussed as a way of actuating a LEM from the …


An Optimization-Based Framework For Designing Robust Cam-Based Constant-Force Compliant Mechanisms, John Christian Meaders Jun 2008

An Optimization-Based Framework For Designing Robust Cam-Based Constant-Force Compliant Mechanisms, John Christian Meaders

Theses and Dissertations

Constant-force mechanisms are mechanical devices that provide a near-constant output force over a prescribed deflection range. This thesis develops various optimization-based methods for designing robust constant-force mechanisms. The configuration of the mechanisms that are the focus of this research comprises a cam and a compliant spring fixed at one end while making contact with the cam at the other end. This configuration has proven to be an innovative solution in several applications because of its simplicity in manufacturing and operation. In this work, several methods are introduced to design these mechanisms, and reduce the sensitivity of these mechanisms to manufacturing …


Fundamental Components For Lamina Emergent Mechanisms, Joseph O. Jacobsen Feb 2008

Fundamental Components For Lamina Emergent Mechanisms, Joseph O. Jacobsen

Theses and Dissertations

This thesis introduces lamina emergent mechanisms (LEMs) and presents components that can be used as building blocks to create LEMs capable of more complex motion. As the name suggests, lamina emergent mechanisms are fabricated out of planar materials (the lamina) but their motion is out of that plane (emergent). Lamina emergent mechanisms can provide benefits that include reduced manufacturing costs and minimal volume when in the planar state. The compact initial state of LEMs is beneficial in reducing shipping costs, especially in volume critical applications. LEMs also exhibit the potential benefits of compliant mechanisms, namely increased precision, reduced weight, reduced …


Development Of Deployable Wings For Small Unmanned Aerial Vehicles Using Compliant Mechanisms, Steven D. Landon Jul 2007

Development Of Deployable Wings For Small Unmanned Aerial Vehicles Using Compliant Mechanisms, Steven D. Landon

Theses and Dissertations

Unmanned Air Vehicles (UAVs) have recently gained attention due to their increased ability to perform sophisticated missions with less cost and/or risk than their manned counterparts. This thesis develops approaches to the use of compliant mechanisms in the design of deployable wings for small UAVs. Although deployable wings with rigid-link mechanisms have been used in the past to maintain flight endurance while minimizing required storage volume, compliant mechanisms offer many advantages in manufacturability and potential space savings due to function sharing of components. A number of compliant, deployable wing concepts are generated and a classification system for them is formed. …


Preliminary Design Approach For Prosthetic Ankle Joints Using Compliant Mechanisms, Jason Matthew Wiersdorf Dec 2005

Preliminary Design Approach For Prosthetic Ankle Joints Using Compliant Mechanisms, Jason Matthew Wiersdorf

Theses and Dissertations

The objective of this thesis is to develop design approaches and models for prosthetic ankle joints using kinematic models of the human ankle and compliant mechanisms technology. Compliant mechanisms offer several potential design advantages over traditional rigid-body designs including high reliability and low cost. These design advantages are ideal for use in prosthetics. Some prosthetic ankle/foot systems currently on the market have multiple degrees of freedom yet are expensive. Additionally, even though these systems have multiple degrees of freedom, none of them are designed after the actual movements of the biological ankle. In this thesis a two, single degree-of-freedom hinge …


On-Chip Actuation Of Compliant Bistable Micro-Mechanisms, Michael S. Baker Mar 2003

On-Chip Actuation Of Compliant Bistable Micro-Mechanisms, Michael S. Baker

Theses and Dissertations

Two compliant bistable micro-mechanisms have been developed which can be switched in either direction using on-chip thermal actuation. The energy storage and bistable behavior of the mechanisms are achieved through the elastic deflection of compliant segments. The pseudo-rigid-body model was used for the compliant mechanism design, and for analysis of the large-deflection flexible segments. To achieve on-chip actuation, the mechanism designs were optimized to reduce their required rotation, allow them to be switched using linear-motion thermal actuators. The modeling theory and analysis are presented for several design iterations. Each iteration was successfully fabricated and tested using either the MUMPs or …


Thermal Microactuators For Microelectromechanical Systems (Mems), Rebecca Cragun Mar 2003

Thermal Microactuators For Microelectromechanical Systems (Mems), Rebecca Cragun

Theses and Dissertations

Microactuators are needed to convert energy into mechanical work at the microscale. Thermal microactuators can be used to produce this needed mechanical work. The purpose of this research was to design, fabricate, and test thermal microactuators for use at the microscale in microelectromechanical systems (MEMS). The microactuators developed were tested to determine the magnitude of their deflection and estimate their force. Five groups of thermal microactuators were designed and tested. All of the groups used the geometrically constrained expansion of various segments to produce their deflection. The first group, Thermal Expansion Devices (TEDs), produced a rotational displacement and had deflections …


An Investigation Of Compliant Over-Running Ratchet And Pawl Clutches, Gregory Mark Roach Mar 2003

An Investigation Of Compliant Over-Running Ratchet And Pawl Clutches, Gregory Mark Roach

Theses and Dissertations

This thesis proposes that compliant mechanism theory can be used to design over-running ratchet and pawl clutches with reduced part count, lower assembly and manufacturing time while maintaining functionality. An extension of the theory to the micro regime is also briefly addressed. The results of the research show that the ratchet and pawl type of over-running clutch is a good choice for the use of compliance, and the clutch pawls should be loaded in compression to get the largest amount of output torque. It was found that com-pliant mechanism theory can be used to design ratchet and pawl clutches with …


On-Chip Actuation Of An In-Plane Compliant Bistable Micromechanism, Michael S. Baker, Larry L. Howell Dec 2002

On-Chip Actuation Of An In-Plane Compliant Bistable Micromechanism, Michael S. Baker, Larry L. Howell

Faculty Publications

A compliant bistable micromechanism has been developed which can be switched in either direction using on-chip thermal actuation. The energy storage and bistable behavior of the mechanism is achieved through the elastic deflection of compliant segments. The Pseudo-Rigid-Body Model was used for the compliant mechanism design, and for analysis of the large deflection flexible segments. To achieve on-chip actuation, the mechanism design was optimized to allow it to be switched using linear motion thermal actuators. The modeling theory and analysis are presented for three design iterations, with two iterations fabricated in the MUMP's process and the third in the SUMMiT …