Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Entire DC Network

Model To Demonstrate Effects Of Mass Transfer And Applied Current In An Electrolytic Cell, George Ankrah May 2024

Model To Demonstrate Effects Of Mass Transfer And Applied Current In An Electrolytic Cell, George Ankrah

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

This study investigates the relationship between applied current and resulting cell potential in an electrolytic system, considering the transport of electroactive species. By applying Michael Faraday's laws of electrolysis and the Nernst-Planck equation, the behavior of electroactive species in diffusion-controlled systems with and without stirring is modeled. The plots demonstrate how stirring enhances ion transport and establishes a stable Nernst diffusion layer, affecting the kinetics of electrochemical reactions. Understanding these dynamics is crucial for optimizing electrolysis processes.


Effects Of Confinement On Ionic Liquids And Deep Eutectic Solvents For The Design Of Catalytic Systems, Electrochemical Devices, And Separations, Andrew Drake Jan 2023

Effects Of Confinement On Ionic Liquids And Deep Eutectic Solvents For The Design Of Catalytic Systems, Electrochemical Devices, And Separations, Andrew Drake

Theses and Dissertations--Chemical and Materials Engineering

Confinement of ionic liquids (ILs) and deep eutectic solvents (DESs) within mesoporous materials such as silica helps to control the local environment within the pores for applications such as catalysis, electrochemistry, and absorption. Silica thin films with 2.5 and 8 nm pores and micron-sized silica particles with pore diameters of 5.4 and 9 nm were synthesized to study the effect of nanoconfinement on ILs 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), and DESs reline and ethaline (choline chloride and urea or ethylene glycol). Silica thin films with vertically aligned, well ordered, and accessible pores were synthesized via the evaporation-induced …


Diffusion Of A Salt In An Aqueous Media, Aldaly Pineda Hernandez May 2022

Diffusion Of A Salt In An Aqueous Media, Aldaly Pineda Hernandez

Chemical Engineering Undergraduate Honors Theses

Diffusion is defined as the net transfer of a molecule from a high concentration region to a low concentration region. The concept of diffusion is used in a very important process called "desalination." Desalination is a separation process used to reduce the salt content dissolved in brackish water to make it suitable for human consumption, irrigation, and industrial use.

In desalination plants, it is important to monitor the constantly changing salt content of water, partly due to the diffusive effect. The main purpose of this experiment was to study the diffusion of NaCl in water at two NaCl concentrations. The …


Establishing Independent Tunability Of The Mechanical And Transport Properties Of Polymer Gels, Lucas Rankin Jan 2021

Establishing Independent Tunability Of The Mechanical And Transport Properties Of Polymer Gels, Lucas Rankin

Master’s Theses

Polymer gels can be used in the fabrication of materials for filtering liquid and gaseous media, solid-state electrolytes, and transdermal medical patches. This diverse range of applications primarily relies on the transport and mechanical properties of polymer gels. Both sets of properties have shown excellent tunability, but typically in a coupled fashion. Establishing the independent tunability of the transport and mechanical properties of polymer gels (using simple, cost-effective methods) is paramount if polymer gels are to be used to their full potential. Specifically, block copolymer gels self-assemble into organized nanoscale networks within the gel solvent, which allows for facile control …


Assessing The Impact Of Block-Selective Homopolymers On The Diffusion Of Payload Through Polymeric Organogels, Ian Coates Jan 2021

Assessing The Impact Of Block-Selective Homopolymers On The Diffusion Of Payload Through Polymeric Organogels, Ian Coates

Honors Theses

Styrenic polymer gels have received recent attention for their application in transdermal patches due to their unique properties. Previous research in the pharmaceutical industry has identified that polymeric gels, specifically styrenic gels, have the potential to encompass multiple functions of the transdermal delivery patch including controlling mechanical and delivery properties. To tailor styrenic gels either the gel nanostructure or the drug complex can be controlled. Specifically, this thesis investigated the effect of gel nanostructure in an attempt to control the gel diffusivity and mechanical properties. To control gel nanostructure a phase selective styrene homopolymer was used at varying concentrations. It …


Effects Of Microporous Structure On The Enzymatic Conversion Of Biomass Using A Multiscale Model, Saketh Merugu Jan 2021

Effects Of Microporous Structure On The Enzymatic Conversion Of Biomass Using A Multiscale Model, Saketh Merugu

Dissertations, Master's Theses and Master's Reports

The generation of biofuels from lignocellulosic biomass involves innovative process technology that is being investigated worldwide. Enzymatic hydrolysis is a major step in the contemporary process of the generation of biofuels. Guided by pore size distribution measured using NMR cryoporometry, we developed pore-enzyme diffusion and adsorption models at the particle level coupled with a kinetic model for cellulose, cellobiose, and glucose production at flask level. By simulating these models in MATLAB, COMSOL, and Polymath software packages, we investigate the effects of various biomass particle-related parameters (particle dimensions, porosity, enzyme accessibility) on the characteristic time of enzyme diffusion and adsorption and …


Elucidating The Properties And Mechanism For Cellulose Dissolution In Tetrabutylphosphonium-Based Ionic Liquids Using High Concentrations Of Water, Brad Crawford Jan 2020

Elucidating The Properties And Mechanism For Cellulose Dissolution In Tetrabutylphosphonium-Based Ionic Liquids Using High Concentrations Of Water, Brad Crawford

Graduate Theses, Dissertations, and Problem Reports

The structural, transport, and thermodynamic properties related to cellulose dissolution by tetrabutylphosphonium chloride (TBPCl) and tetrabutylphosphonium hydroxide (TBPH)-water mixtures have been calculated via molecular dynamics simulations. For both ionic liquid (IL)-water solutions, water veins begin to form between the TBPs interlocking arms at 80 mol % water, opening a pathway for the diffusion of the anions, cations, and water. The water veins allow for a diffusion regime shift in the concentration region from 80 to 92.5 mol % water, providing a higher probability of solvent interaction with the dissolving cellulose strand. The hydrogen bonding was compared between small and large …


Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti Nov 2017

Microbial Desalination Cells With Efficient Platinum Group Metal-Free Cathode Catalysts, Morteza Rezaei Talarposhti

Chemical and Biological Engineering ETDs

Iron-nitrogen-carbon based catalyst was used at the cathode of a microbial desalination cell (MDC) and compared with platinum (Pt) and activated carbon (AC) cathode. Fe-N-C catalyst was prepared using nicarbazin (NCB) as organic precursor by sacrificial support method (SSM). Rotating ring disk electrode (RRDE) experiments shows that Fe-NCB had higher electrocatalytic activity compared to AC and Pt. The utilization of Fe-NCB into the cathode improved substantially the performance output with initial maximum power density of 49±2 μWcm-2 in contrast to Pt and AC catalysts which have shown lower values of 34±1 μWcm-2 and 23.5±1.5 μWcm-2, respectively. …


Doug Ruthven And Jorg Karger: Their Individual And Collective Contributions To The Field Of Zeolite Science And Engineering, Dhananjai B. Shah Dec 2010

Doug Ruthven And Jorg Karger: Their Individual And Collective Contributions To The Field Of Zeolite Science And Engineering, Dhananjai B. Shah

Chemical & Biomedical Engineering Faculty Publications

Prof. Doug Ruthven and Prof. Jörg Kärger are two giants in the field of zeolite science and engineering. Over their academic careers encompassing almost forty years each, they have contributed significantly to the advancement of fundamental understanding of adsorption and diffusion in zeolites as well as their industrial applications. The author, in the beginning of his academic career, had an opportunity to spend two years as a post-doctoral fellow in Prof. Ruthven’s laboratory at the University of New Brunswick (1975–1977). This experience actually motivated me to spend my academic career in working in the field of zeolite adsorption and …


Short-Time Transient Analysis Of Intercalation Of An Ion Into A Sphere, Sheba Devan, Ralph E. White Jan 2007

Short-Time Transient Analysis Of Intercalation Of An Ion Into A Sphere, Sheba Devan, Ralph E. White

Faculty Publications

A short-time transient analysis is presented for a sinusoidal input potential for a spherical particle. The objective of this work was to extract accurate values of the parameters associated with an intercalation into a spherical particle. These parameters are exchange current density, double-layer capacitance, and diffusion coefficient. The effects of these parameters on the response were examined using a sensitivity analysis, which indicated that optimum frequency values of the input perturbation exist for estimation of these parameters. A procedure is presented to obtain all these parameters using the short-time response. The results show that the short-time analysis is a useful …


A Steady-State Impedance Model For A Pemfc Cathode, Qingzhi Guo, Ralph E. White Jan 2004

A Steady-State Impedance Model For A Pemfc Cathode, Qingzhi Guo, Ralph E. White

Faculty Publications

A model for the simulation of the steady-state impedance response of a polymer electrolyte membrane fuel cell (PEMFC) cathode is presented. The catalyst layer of the electrode is assumed to consist of many flooded spherical agglomerate particles surrounded by a small volume fraction of gas pores. Stefan-Maxwell equations are used to describe the multicomponent gas-phase transport occurring in both the gas diffusion layer and the catalyst layer of the electrode. Liquid-phase diffusion of O2 is assumed to take place in the flooded agglomerate particles. Newman’s porous electrode theory is applied to determine over-potential distributions. © 2004 The Electrochemical Society. All …