Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Charged Particle Filter For Entrance Of Imap-Lo, Daniel Abel Jan 2019

Charged Particle Filter For Entrance Of Imap-Lo, Daniel Abel

Honors Theses and Capstones

No abstract provided.


Unh Observatory Exoplanet Transit Depth Limit, Nicholas R. Larose Jan 2019

Unh Observatory Exoplanet Transit Depth Limit, Nicholas R. Larose

Honors Theses and Capstones

Using the University of New Hampshire Observatory, we performed multiple exoplanet transits observations on a variety of systems. Of these transits, those performed with ideal weather conditions were chosen to do extensive analysis on. The transit chosen for initial analysis was HAT-P-56b. We then used Z-Score values, along with the average mean and standard deviation collected from multiple transits to determine a minimum possible transit depth of 7.4 +/- 0.6 mmag. This value will allow UNH to access exoplanet transit observation and / or confirm potential exoplanets, thus making the UNH Observatory more research capable. A follow up threshold transit …


Determination Of Multi-Messenger Signals From Matter Outflows Of Merger Systems, Ronny Nguyen Jan 2019

Determination Of Multi-Messenger Signals From Matter Outflows Of Merger Systems, Ronny Nguyen

Honors Theses and Capstones

In 2017, LIGO detected gravitational waves from GW170817. This presented for the first time, gravitational waves originating from a neutron star - neutron star merger. Studies of neutron star mergers are significant because the multi-messenger signals in the form of gravitational waves and electromagnetic waves can inform us on the nuclear physics of neutron stars and the creation of heavy elements in the universe. Matter is ejected in the merging process and forms the outflow which provides a neutron-rich environment for rapid neutron capture (r-process) to occur leading to the nucleosynthesis of heavy elements. What we detect on Earth are …