Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Restoring The Fire–Grazing Interaction Promotes Tree–Grass Coexistence By Controlling Woody Encroachment, Jane F. Capozzelli, James R. Miller, Diane M. Debinski, Walter H. Schacht Feb 2020

Restoring The Fire–Grazing Interaction Promotes Tree–Grass Coexistence By Controlling Woody Encroachment, Jane F. Capozzelli, James R. Miller, Diane M. Debinski, Walter H. Schacht

Department of Agronomy and Horticulture: Faculty Publications

Woody encroachment can convert grasslands and savannas to shrublands and woodlands, so understanding the processes which regulate woody encroachment is necessary to conserve or restore these ecosystems.We hypothesized that recreating the fire–grazing interaction would limit woody encroachment because focal grazing increases fuel accumulation on unburned areas and increases browsing on emergent woody plants in burned areas. This study was conducted in the Grand River Grasslands of Iowa and Missouri (USA) on 11 sites (15.4–35.0 ha). Each site was assigned to one treatment: patch-burn-graze (n = 4), with spatially discrete prescribed fires and free access by cattle (the fire–grazing interaction); graze-andburn …


Temporal Variability In Aboveground Plant Biomass Decreases As Spatial Variability Increases, Devan Allen Mcgranahan, Torre J. Hovick, R. Dwayne Elmore, David M. Engle, Samuel D. Fuhlendorf, Stephen L. Winter, James R. Miller, Diane M. Debinski Jan 2016

Temporal Variability In Aboveground Plant Biomass Decreases As Spatial Variability Increases, Devan Allen Mcgranahan, Torre J. Hovick, R. Dwayne Elmore, David M. Engle, Samuel D. Fuhlendorf, Stephen L. Winter, James R. Miller, Diane M. Debinski

School of Natural Resources: Faculty Publications

Ecological theory predicts that diversity decreases variability in ecosystem function. We predict that, at the landscape scale, spatial variability created by a mosaic of contrasting patches that differ in time since disturbance will decrease temporal variability in aboveground plant biomass. Using data from a multi-year study of seven grazed tallgrass prairie landscapes, each experimentally managed for one to eight patches, we show that increased spatial variability driven by spatially patchy fire and herbivory reduces temporal variability in aboveground plant biomass. This pattern is associated with statistical evidence for the portfolio effect and a positive relationship between temporal variability and functional …


Temporal Variability In Aboveground Plant Biomass Decreases As Spatial Variability Increases, Devan Allen Mcgranahan, Torre J. Hovick, R. Dwayne Elmore, David M. Engle, Samuel D. Fuhlendorf, Stephen L. Winter, James R. Miller, Diane M. Debinski Jan 2016

Temporal Variability In Aboveground Plant Biomass Decreases As Spatial Variability Increases, Devan Allen Mcgranahan, Torre J. Hovick, R. Dwayne Elmore, David M. Engle, Samuel D. Fuhlendorf, Stephen L. Winter, James R. Miller, Diane M. Debinski

School of Natural Resources: Faculty Publications

Ecological theory predicts that diversity decreases variability in ecosystem function. We predict that, at the landscape scale, spatial variability created by a mosaic of contrasting patches that differ in time since disturbance will decrease temporal variability in aboveground plant biomass. Using data from a multi-year study of seven grazed tallgrass prairie landscapes, each experimentally managed for one to eight patches, we show that increased spatial variability driven by spatially patchy fire and herbivory reduces temporal variability in aboveground plant biomass. This pattern is associated with statistical evidence for the portfolio effect and a positive relationship between temporal variability and functional …