Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Development Of A Metabolomic Method To Define The Phenylalanome In Arabidopsis Thaliana, Cole G. Wunderlich, Clint Chapple, Xu Li Oct 2013

Development Of A Metabolomic Method To Define The Phenylalanome In Arabidopsis Thaliana, Cole G. Wunderlich, Clint Chapple, Xu Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the study of metabolomics, one of the greatest challenges can be accurately identifying compounds detected in biological extracts, especially when standards are not readily available. Current metabolomic methods are also limited in that they provide little to no information about a compound’s metabolic origin. In this study, we sought to address these issues by developing a novel metabolomic method that employs stable isotope feeding, LC-MS, Xcms, and an analytical software algorithm to study the ‘phenylalanome’ of Arabidopsis thaliana. Using this approach we were able to develop a method that, based on current results, is capable of detecting over …


Subset Of Heat-Shock Transcription Factors Required For The Early Response Of Arabidopsis To Excess Light, Hou-Sung Jung, Peter A. Crisp, Gonzalo M. Estavillo, Benjamin Cole Aug 2013

Subset Of Heat-Shock Transcription Factors Required For The Early Response Of Arabidopsis To Excess Light, Hou-Sung Jung, Peter A. Crisp, Gonzalo M. Estavillo, Benjamin Cole

Dartmouth Scholarship

Sunlight provides energy for photosynthesis and is essential for nearly all life on earth. However, too much or too little light or rapidly fluctuating light conditions cause stress to plants. Rapid changes in the amount of light are perceived as a change in the reduced/oxidized (redox) state of photosynthetic electron transport components in chloroplasts. However, how this generates a signal that is relayed to changes in nuclear gene expression is not well understood. We modified redox state in the reference plant, Arabidopsis thaliana, using either excess light or low light plus the herbicide DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), a well-known inhibitor of photosynthetic …


Identification Of Cyclophilin Gene Family In Soybean And Characterization Of Gmcyp1, Hemanta Raj Mainali Jul 2013

Identification Of Cyclophilin Gene Family In Soybean And Characterization Of Gmcyp1, Hemanta Raj Mainali

Electronic Thesis and Dissertation Repository

I identified members of the Cyclophilin (CYP) gene family in soybean (Glycine max) and characterized the GmCYP1, one of the members of soybean CYP. CYPs belong to the immunophilin superfamily with peptidyl-prolyl cis-trans isomerase (PPIase) activity. PPIase catalyzes the interconversion of the cis- and trans-rotamers of the peptidyl-prolyl amide bond of peptides. After extensive data mining, I identified 62 different CYP genes in soybean (GmCYP1 to GmCYP62), of which 8 are multi-domain proteins and 54 are single domain proteins. At least 25% of the GmCYP genes are expressed in soybean. GmCYP1 …


Functional Annotation, Transcriptional Characterization And Enzymatic Contributions Of Essential Amino Acid Biosynthesis-Related Genes, Teresa J. Clark Jun 2013

Functional Annotation, Transcriptional Characterization And Enzymatic Contributions Of Essential Amino Acid Biosynthesis-Related Genes, Teresa J. Clark

Masters Theses

In plants, essential amino acid biosynthesis predominantly or exclusively occurs in the plastid. The plastid in the heterokont alga Nannochloropsis oceanica is surrounded by four membranes, which add great complexity to intracellular trafficking and communication. N. oceanica genes in essential amino acid biosynthesis were functionally annotated. The biosynthesis pathways resemble the pathways in Arabidopsis thaliana, but the gene content seems to be simpler in N. oceanica.

In addition, two A. thaliana mutants with loss-of-function mutations in the aspartate kinase-homoserine dehydrogenase 2 (AK-HSDH2) gene were characterized. These ak-hsdh2 mutants demonstrate unexpected accumulation of aspartate-derived amino acids (ADAAs), particularly threonine, in …


Identification Of Cytokinin-Responsive Genes Using Microarray Meta-Analysis And Rna-Seq In Arabidopsis, Apurva Bhargava, Ivory Clabaugh, Jenn P. To, Bridey B. Maxwell, Yi-Hsuan Chiang, G. Eric Schaller, Ann Loraine, Joseph J. Kieber May 2013

Identification Of Cytokinin-Responsive Genes Using Microarray Meta-Analysis And Rna-Seq In Arabidopsis, Apurva Bhargava, Ivory Clabaugh, Jenn P. To, Bridey B. Maxwell, Yi-Hsuan Chiang, G. Eric Schaller, Ann Loraine, Joseph J. Kieber

Dartmouth Scholarship

Cytokinins are N6-substituted adenine derivatives that play diverse roles in plant growth and development. We sought to define a robust set of genes regulated by cytokinin as well as to query the response of genes not represented on microarrays. To this end, we performed a meta-analysis of microarray data from a variety of cytokinin-treated samples and used RNA-seq to examine cytokinin-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Microarray meta-analysis using 13 microarray experiments combined with empirically defined filtering criteria identified a set of 226 genes differentially regulated by cytokinin, a subset of which has previously been …


Functional Characterization Of Type-B Response Regulators In The Arabidopsis Cytokinin Response, Kristine Hill, Dennis E. Mathews, Hyo Jung Kim, Ian H. Street, Sarah L. Wildes, Yi-Hsuan Chiang, Michael G. Mason, Jose M. Alonso, Joseph R. Ecker, Joseph K. Kieber, G. Eric Schaller May 2013

Functional Characterization Of Type-B Response Regulators In The Arabidopsis Cytokinin Response, Kristine Hill, Dennis E. Mathews, Hyo Jung Kim, Ian H. Street, Sarah L. Wildes, Yi-Hsuan Chiang, Michael G. Mason, Jose M. Alonso, Joseph R. Ecker, Joseph K. Kieber, G. Eric Schaller

Dartmouth Scholarship

Cytokinins play critical roles in plant growth and development, with the transcriptional response to cytokinin being mediated by the type-B response regulators. In Arabidopsis (Arabidopsis thaliana), type-B response regulators (ARABIDOPSIS RESPONSE REGULATORS [ARRs]) form three subfamilies based on phylogenic analysis, with subfamily 1 having seven members and subfamilies 2 and 3 each having two members. Cytokinin responses are predominantly mediated by subfamily 1 members, with cytokinin-mediated effects on root growth and root meristem size correlating with type-B ARR expression levels. To determine which type-B ARRs can functionally substitute for the subfamily 1 members ARR1 or ARR12, we …


Effects Of Ethylene On Secondary Xylem Formation In Arabidopsis Thaliana, Haley M. Rupp Jan 2013

Effects Of Ethylene On Secondary Xylem Formation In Arabidopsis Thaliana, Haley M. Rupp

Dissertations, Master's Theses and Master's Reports - Open

Ethylene has myriad roles as a plant hormone, ranging from senescence and defending against pathogen attacks to fruit ripening and interactions with other hormones. It has been shown to increase cambial activity in poplar, but the effect on wood formation in Arabidopsis hypocotyl has not previously been studied. The Auxin-Regulated Gene involved in Organ Size (ARGOS), which increases organ size by lengthening the time for cell division, was found to be upregulated by ethylene. We tested the effect of ethylene treatment at 10 and 100 µM ACC on three genotypes of Arabidopsis, Col0 (wild-type), an ARGOS deficient mutant (argos), and …


The Clubroot Pathogen (Plasmodiophora Brassicae) Influences Auxin Signaling To Regulate Auxin Homeostasis In Arabidopsis, Linda Jahn, Stefanie Mucha, Sabine Bergmann, Cornelia Horn, Paul E. Staswick, Bianka Steffens, Johannes Siemens, Jutta Ludwig-Müller Jan 2013

The Clubroot Pathogen (Plasmodiophora Brassicae) Influences Auxin Signaling To Regulate Auxin Homeostasis In Arabidopsis, Linda Jahn, Stefanie Mucha, Sabine Bergmann, Cornelia Horn, Paul E. Staswick, Bianka Steffens, Johannes Siemens, Jutta Ludwig-Müller

Department of Agronomy and Horticulture: Faculty Publications

The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA) and transcription …