Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Entire DC Network

The Regulation Of Plant Vegetative Phase Transition And Rejuvenation: Mirnas, A Key Regulator, Tajbir Raihan, Robert L. Geneve, Sharyn E. Perry, Carlos M. Rodriguez Lopez Oct 2021

The Regulation Of Plant Vegetative Phase Transition And Rejuvenation: Mirnas, A Key Regulator, Tajbir Raihan, Robert L. Geneve, Sharyn E. Perry, Carlos M. Rodriguez Lopez

Horticulture Faculty Publications

In contrast to animals, adult organs in plants are not formed during embryogenesis but generated from meristematic cells as plants advance through development. Plant development involves a succession of different phenotypic stages and the transition between these stages is termed phase transition. Phase transitions need to be tightly regulated and coordinated to ensure they occur under optimal seasonal, environmental conditions. Polycarpic perennials transition through vegetative stages and the mature, reproductive stage many times during their lifecycles and, in both perennial and annual species, environmental factors and culturing methods can reverse the otherwise unidirectional vector of plant development. Epigenetic factors regulating …


Greenhouse Spatial Effects Detected In The Barley (Hordeum Vulgare L.) Epigenome Underlie Stochasticity Of Dna Methylation, Moumouni Konate, Michael J. Wilkinson, Julian Taylor, Eileen S. Scott, Bettina Berger, Carlos M. Rodriguez Lopez Sep 2020

Greenhouse Spatial Effects Detected In The Barley (Hordeum Vulgare L.) Epigenome Underlie Stochasticity Of Dna Methylation, Moumouni Konate, Michael J. Wilkinson, Julian Taylor, Eileen S. Scott, Bettina Berger, Carlos M. Rodriguez Lopez

Horticulture Faculty Publications

Environmental cues are known to alter the methylation profile of genomic DNA, and thereby change the expression of some genes. A proportion of such modifications may become adaptive by adjusting expression of stress response genes but others have been shown to be highly stochastic, even under controlled conditions. The influence of environmental flux on plants adds an additional layer of complexity that has potential to confound attempts to interpret interactions between environment, methylome, and plant form. We therefore adopt a positional and longitudinal approach to study progressive changes to barley DNA methylation patterns in response to salt exposure during development …


Common Garden Experiment Reveals Altered Nutritional Values And Dna Methylation Profiles In Micropropagated Three Elite Ghanaian Sweet Potato Genotypes, Belinda Akomeah, Marian D. Quain, Sunita A. Ramesh, Lakshay Anand, Carlos M. Rodríguez López Apr 2019

Common Garden Experiment Reveals Altered Nutritional Values And Dna Methylation Profiles In Micropropagated Three Elite Ghanaian Sweet Potato Genotypes, Belinda Akomeah, Marian D. Quain, Sunita A. Ramesh, Lakshay Anand, Carlos M. Rodríguez López

Horticulture Faculty Publications

Micronutrient deficiency is the cause of multiple diseases in developing countries. Staple crop biofortification is an efficient means to combat such deficiencies in the diets of local consumers. Biofortified lines of sweet potato (Ipomoea batata L. Lam) with enhanced beta-carotene content have been developed in Ghana to alleviate Vitamin A Deficiency. These genotypes are propagated using meristem micropropagation to ensure the generation of virus-free propagules. In vitro culture exposes micropropagated plants to conditions that can lead to the accumulation of somaclonal variation with the potential to generate unwanted aberrant phenotypes. However, the effect of micropropagation induced somaclonal variation on …


Salt Stress Induces Non-Cg Methylation In Coding Regions Of Barley Seedlings (Hordeum Vulgare), Moumouni Konate, Michael J. Wilkinson, Benjamin T. Mayne, Stephen M. Pederson, Eileen S. Scott, Bettina Berger, Carlos M. Rodriguez Lopez Jun 2018

Salt Stress Induces Non-Cg Methylation In Coding Regions Of Barley Seedlings (Hordeum Vulgare), Moumouni Konate, Michael J. Wilkinson, Benjamin T. Mayne, Stephen M. Pederson, Eileen S. Scott, Bettina Berger, Carlos M. Rodriguez Lopez

Horticulture Faculty Publications

Salinity can negatively impact crop growth and yield. Changes in DNA methylation are known to occur when plants are challenged by stress and have been associated with the regulation of stress-response genes. However, the role of DNA-methylation in moderating gene expression in response to salt stress has been relatively poorly studied among crops such as barley. Here, we assessed the extent of salt-induced alterations of DNA methylation in barley and their putative role in perturbed gene expression. Using Next Generation Sequencing, we screened the leaf and root methylomes of five divergent barley varieties grown under control and three salt concentrations, …


Genome-Wide Discriminatory Information Patterns Of Cytosine Dna Methylation, Robersy Sanchez, Sally A. Mackenzie Jan 2016

Genome-Wide Discriminatory Information Patterns Of Cytosine Dna Methylation, Robersy Sanchez, Sally A. Mackenzie

Department of Agronomy and Horticulture: Faculty Publications

Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes IR and (2) the uncertainty of not observing a SNP LCR. We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to …


Osmotic Stress Induces Phosphorylation Of Histone H3 At Threonine 3 In Pericentromeric Regions Of Arabidopsis Thaliana, Zhen Wang, Juan Armando Casas-Mollano, Jianping Xu, Jean-Jack M. Riethoven, Chi Zhang, Heriberto Cerutti Jul 2015

Osmotic Stress Induces Phosphorylation Of Histone H3 At Threonine 3 In Pericentromeric Regions Of Arabidopsis Thaliana, Zhen Wang, Juan Armando Casas-Mollano, Jianping Xu, Jean-Jack M. Riethoven, Chi Zhang, Heriberto Cerutti

Center for Plant Science Innovation: Faculty and Staff Publications

Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy …


Osmotic Stress Induces Phosphorylation Of Histone H3 At Threonine 3 In Pericentromeric Regions Of Arabidopsis Thaliana, Zhen Wang, Juan Casas-Mollano, Jianping Xu, Jean-Jack Riethoven, Chi Zhang, Heriberto D. Cerutti Jul 2015

Osmotic Stress Induces Phosphorylation Of Histone H3 At Threonine 3 In Pericentromeric Regions Of Arabidopsis Thaliana, Zhen Wang, Juan Casas-Mollano, Jianping Xu, Jean-Jack Riethoven, Chi Zhang, Heriberto D. Cerutti

Center for Plant Science Innovation: Faculty and Staff Publications

Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy …


Gene Silencing In Microalgae: Mechanisms And Biological Roles, Eun-Jeong Kim, Xinrong Ma, Heriberto Cerutti Jan 2015

Gene Silencing In Microalgae: Mechanisms And Biological Roles, Eun-Jeong Kim, Xinrong Ma, Heriberto Cerutti

Center for Plant Science Innovation: Faculty and Staff Publications

Microalgae exhibit enormous diversity and can potentially contribute to the production of biofuels and high value compounds. However, for most species, our knowledge of their physiology, metabolism, and gene regulation is fairly limited. In eukaryotes, gene silencing mechanisms play important roles in both the reversible repression of genes that are required only in certain contexts and the suppression of genome invaders such at transposons. The recent sequencing of several algal genomes is providing insights into the complexity of these mechanisms in microalgae. Collectively, glaucophyte, red, and green microalgae contain the machineries involved in repressive histone H3 lysine methylation, DNA cytosine …


The Dna- And Rna-Binding Protein Factor Of Dna Methylation 1 Requires Xh Domain-Mediated Complex Formation For Its Function In Rna-Directed Dna Methylation, Meng Xie, Guodong Ren, Chi Zhang, Bin Yu Jan 2012

The Dna- And Rna-Binding Protein Factor Of Dna Methylation 1 Requires Xh Domain-Mediated Complex Formation For Its Function In Rna-Directed Dna Methylation, Meng Xie, Guodong Ren, Chi Zhang, Bin Yu

Center for Plant Science Innovation: Faculty and Staff Publications

Studies have identified a sub-group of SGS3-LIKE proteins including FDM1–5 and IDN2 as key components of RNA-directed DNA methylation pathway (RdDM). Although FDM1 and IDN2 bind RNAs with 5' overhangs, their functions in the RdDM pathway remain to be examined. Here we show that FDM1 interacts with itself and with IDN2. Gel filtration suggests that FDM1 may exist as a homodimer in a heterotetramer complex in vivo. The XH domain of FDM1 mediates the FDM1–FDM1 and FDM1–IDN2 interactions. Deletion of the XH domain disrupts FDM1 complex formation and results in loss-of-function of FDM1. These results demonstrate that XH domainmediated …


Histone H3 Phosphorylation: Universal Code Or Lineage Specific Dialects?, Heriberto Cerutti, J. Armando Casas-Mollano Jan 2009

Histone H3 Phosphorylation: Universal Code Or Lineage Specific Dialects?, Heriberto Cerutti, J. Armando Casas-Mollano

Center for Plant Science Innovation: Faculty and Staff Publications

Post-translational modifications of histones modulate the functional landscape of chromatin and impinge on many DNA-mediated processes. Phosphorylation of histone H3 plays a role in the regulation of gene expression and in chromosome condensation/segregation. Certain evolutionarily conserved residues on histone H3—namely Thr3, Ser10, Thr11, and Ser28—are phosphorylated during interphase or mitosis in both metazoa and plants. However, many of the kinases involved in these events appear to have evolved independently in different lineages. Likewise, the mechanistic function of specific phosphorylated amino acids, although poorly understood, also seems to differ among eukaryotes. Moreover, some modifications, such as phosphorylation of histone H3 Ser10, …