Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 257

Full-Text Articles in Entire DC Network

Mycorrhizal Feedbacks Influence Global Forest Structure And Diversity, Camille S. Delavaux, Joseph A. Lamanna, Jonathan A. Myers, Richard P. Phillips, Salomón Aguilar, David Allen, Alfonso Alonso, Kristina J. Anderson-Teixeira, Matthew E. Baker, Jennifer L. Baltzer, Pulchérie Bissiengou, Mariana Bonfim, Norman A. Bourg, Warren Y. Brockelman, David F.R.P. Burslem, Li Wan Chang, Yang Chen, Jyh Min Chiang, Chengjin Chu, Keith Clay, Susan Cordell, Mary Cortese, Jan Den Ouden, Christopher Dick, Sisira Ediriweera, Erle C. Ellis, Anna Feistner, Amy L. Freestone, Thomas Giambelluca, Christian P. Giardina, Gregory S. Gilbert, Fangliang He, Jan Holík, Robert W. Howe, Walter Huaraca Huasca, Stephen P. Hubbell, Faith Inman, Patrick A. Jansen, Daniel J. Johnson, Kamil Kral, Sabrina E. Russo, Et Al. Dec 2023

Mycorrhizal Feedbacks Influence Global Forest Structure And Diversity, Camille S. Delavaux, Joseph A. Lamanna, Jonathan A. Myers, Richard P. Phillips, Salomón Aguilar, David Allen, Alfonso Alonso, Kristina J. Anderson-Teixeira, Matthew E. Baker, Jennifer L. Baltzer, Pulchérie Bissiengou, Mariana Bonfim, Norman A. Bourg, Warren Y. Brockelman, David F.R.P. Burslem, Li Wan Chang, Yang Chen, Jyh Min Chiang, Chengjin Chu, Keith Clay, Susan Cordell, Mary Cortese, Jan Den Ouden, Christopher Dick, Sisira Ediriweera, Erle C. Ellis, Anna Feistner, Amy L. Freestone, Thomas Giambelluca, Christian P. Giardina, Gregory S. Gilbert, Fangliang He, Jan Holík, Robert W. Howe, Walter Huaraca Huasca, Stephen P. Hubbell, Faith Inman, Patrick A. Jansen, Daniel J. Johnson, Kamil Kral, Sabrina E. Russo, Et Al.

Center for Plant Science Innovation: Faculty and Staff Publications

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal …


Overcoming Genetic Paucity Of Camelina Sativa: Possibilities For Interspecific Hybridization Conditioned By The Genus Evolution Pathway, Rostyslav Y. Blume, Ruslan Kalendar, Liang Guo, Edgar B. Cahoon, Yaroslav B. Blume Sep 2023

Overcoming Genetic Paucity Of Camelina Sativa: Possibilities For Interspecific Hybridization Conditioned By The Genus Evolution Pathway, Rostyslav Y. Blume, Ruslan Kalendar, Liang Guo, Edgar B. Cahoon, Yaroslav B. Blume

Center for Plant Science Innovation: Faculty and Staff Publications

Camelina or false flax (Camelina sativa) is an emerging oilseed crop and a feedstock for biofuel production. This species is believed to originate from Western Asian and Eastern European regions, where the center of diversity of the Camelina genus is located. Cultivated Camelina species arose via a series of polyploidization events, serving as bottlenecks narrowing genetic diversity of the species. The genetic paucity of C. sativa is foreseen as the most crucial limitation for successful breeding and improvement of this crop. A potential solution to this challenge could be gene introgression from Camelina wild species or from …


A Facile Agrobacterium‑Mediated Transformation Method For The Model Unicellular Green Algae Chlamydomonas Reinhardtii, Truyen N. Quach, Shirley J. Sato, Mark R. Behrens, Paul N. Black, Concetta C. Dirusso, Heriberto D. Cerutti, Tom Elmo Clemente Sep 2023

A Facile Agrobacterium‑Mediated Transformation Method For The Model Unicellular Green Algae Chlamydomonas Reinhardtii, Truyen N. Quach, Shirley J. Sato, Mark R. Behrens, Paul N. Black, Concetta C. Dirusso, Heriberto D. Cerutti, Tom Elmo Clemente

Center for Plant Science Innovation: Faculty and Staff Publications

A reliable and simple Agrobacterium-mediated transformation system for the unicellular green algae model organism Chlamydomonas reinhardtii has been developed. The protocol has been successfully employed with both neomycin phosphotransferase II (nptII) and the phleomycin resistance (bleI) genes coupled with the selective agents paromomycin and zeocin, respectively. A set of binary vectors were assembled that carry the selectable marker cassettes under control either of the Rbcs2 alone or fused to the HSP270A leader sequence, PsaD, or ß-tubulin2 promoters. The corresponding T-DNA elements also harbored a cassette with a codon-optimized version of yellow fluorescence protein (YFP) under …


Genetic Improvement Of Tocotrienol Content Enhances The Oxidative Stability Of Canola Oil, Min Deng, Hao Chen, Wei Zhang, Edgar B. Cahoon, Yongming Zhou, Chunyu Zhang Sep 2023

Genetic Improvement Of Tocotrienol Content Enhances The Oxidative Stability Of Canola Oil, Min Deng, Hao Chen, Wei Zhang, Edgar B. Cahoon, Yongming Zhou, Chunyu Zhang

Center for Plant Science Innovation: Faculty and Staff Publications

Background: Tocotrienols and tocopherols, which are synthesized in plastids of plant cells with similar functionalities, comprise vitamin E to serve as a potent lipid-soluble antioxidant in plants. The synthesis of tocopherols involves the condensation of homogentisic acid (HGA) and phytyl diphosphate (PDP) under the catalysis of homogentisate phytyltransferase (HPT). Tocotrienol synthesis is initiated by the condensation of HGA and geranylgeranyl diphosphate (GGDP) mediated by homogentisate geranylgeranyl transferase (HGGT). As one of the most important oil crops, canola seed is regarded as an ideal plant to efficiently improve the production of vitamin E tocochromanols through genetic engineering approaches. However, only …


Exploring The Potential Of Heterosis To Improve Nitrogen Use Efficiency In Popcorn Plants, Talles De Oliveira Santos, Antônio Teixeira Do Amaral Junior, Rosimeire Barboza Bispo, Wallace De Paula Bernado, Bruna Rohem Simão, Valter Jário De Lima, Marta Simone Mendonça Freitas, Freddy Mora-Poblete, Roberto Dos Santos Trindade, Samuel Henrique Kamphorst, Weverton Pereira Rodrigues, Eliemar Campostrini, Flávia Nicácio Viana, Cosme Damião Cruz May 2023

Exploring The Potential Of Heterosis To Improve Nitrogen Use Efficiency In Popcorn Plants, Talles De Oliveira Santos, Antônio Teixeira Do Amaral Junior, Rosimeire Barboza Bispo, Wallace De Paula Bernado, Bruna Rohem Simão, Valter Jário De Lima, Marta Simone Mendonça Freitas, Freddy Mora-Poblete, Roberto Dos Santos Trindade, Samuel Henrique Kamphorst, Weverton Pereira Rodrigues, Eliemar Campostrini, Flávia Nicácio Viana, Cosme Damião Cruz

Center for Plant Science Innovation: Faculty and Staff Publications

Nitrogen is crucial for plant growth and development, and improving nitrogen use efficiency (NUE) is a viable strategy for reducing dependence on nitrogen inputs and promoting sustainability. While the benefits of heterosis in corn are well known, the physiological mechanisms underlying this phenomenon in popcorn are less understood. We aimed to investigate the effects of heterosis on growth and physiological traits in four popcorn lines and their hybrids under two contrasting nitrogen conditions. We evaluated morpho-agronomic and physiological traits such as leaf pigments, the maximum photochemical efficiency of PSII, and leaf gas exchange. Components associated with NUE were also evaluated. …


Protease Inhibitor Asp Enhances Freezing Tolerance By Inhibiting Protein Degradation In Kumquat, Hua Yang, Ke-Wei Qiao, Jin-Jing Teng, Jia-Bei Chen, Ying-Li Zhong, Li-Qun Rao, Xing-Yao Xiong, Huang Li Apr 2023

Protease Inhibitor Asp Enhances Freezing Tolerance By Inhibiting Protein Degradation In Kumquat, Hua Yang, Ke-Wei Qiao, Jin-Jing Teng, Jia-Bei Chen, Ying-Li Zhong, Li-Qun Rao, Xing-Yao Xiong, Huang Li

Center for Plant Science Innovation: Faculty and Staff Publications

Cold acclimation is a complex biological process leading to the development of freezing tolerance in plants. In this study, we demonstrated that cold-induced expression of protease inhibitor FmASP in a Citrus-relative species kumquat [Fortunella margarita (Lour.) Swingle] contributes to its freezing tolerance by minimizing protein degradation. Firstly, we found that only cold-acclimated kumquat plants, despite extensive leaf cellular damage during freezing, were able to resume their normal growth upon stress relief. To dissect the impact of cold acclimation on this anti-freezing performance, we conducted protein abundance assays and quantitative proteomic analysis of kumquat leaves subjected to cold acclimation …


Mechanism Of Sphingolipid Homeostasis Revealed By Structural Analysis Of Arabidopsis Spt-Orm1 Complex, Peng Liu, Tian Xie, Xinyue Wu, Gongshe Han, Sita D. Gupta, Zike Zhang, Jian Yue, Feitong Dong, Kenneth Gable, Somashekarappa Niranjanakumari, Wanyuan Li, Lin Wang, Wenchen Liu, Ruifeng Yao, Edgar B. Cahoon, Teresa M. Dunn, Xin Gong Mar 2023

Mechanism Of Sphingolipid Homeostasis Revealed By Structural Analysis Of Arabidopsis Spt-Orm1 Complex, Peng Liu, Tian Xie, Xinyue Wu, Gongshe Han, Sita D. Gupta, Zike Zhang, Jian Yue, Feitong Dong, Kenneth Gable, Somashekarappa Niranjanakumari, Wanyuan Li, Lin Wang, Wenchen Liu, Ruifeng Yao, Edgar B. Cahoon, Teresa M. Dunn, Xin Gong

Center for Plant Science Innovation: Faculty and Staff Publications

The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood.We determined the cryo–electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed …


A Role For Heritable Transcriptomic Variation In Maize Adaptation To Temperate Environments, Guangchao Sun, Huihui Yu, Peng Wang, Martha Lopez‑Guerrero, Ravi V. Mural, Olivier N. Mizero, Marcin Grzybowski, Baoxing Song, Karin V. Van Dijk, Daniel P. Schachtman, Chi Zhang, James C. Schnable Mar 2023

A Role For Heritable Transcriptomic Variation In Maize Adaptation To Temperate Environments, Guangchao Sun, Huihui Yu, Peng Wang, Martha Lopez‑Guerrero, Ravi V. Mural, Olivier N. Mizero, Marcin Grzybowski, Baoxing Song, Karin V. Van Dijk, Daniel P. Schachtman, Chi Zhang, James C. Schnable

Center for Plant Science Innovation: Faculty and Staff Publications

Background: Transcription bridges genetic information and phenotypes. Here, we evaluated how changes in transcriptional regulation enable maize (Zea mays), a crop originally domesticated in the tropics, to adapt to temperate environments.

Result: We generated 572 unique RNA-seq datasets from the roots of 340 maize genotypes. Genes involved in core processes such as cell division, chromosome organization and cytoskeleton organization showed lower heritability of gene expression, while genes involved in anti-oxidation activity exhibited higher expression heritability. An expression genome-wide association study (eGWAS) identified 19,602 expression quantitative trait loci (eQTLs) associated with the expression of 11,444 genes. A GWAS …


Soybean GmSaul1, A Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely Through Repressing The Activation Of GmMpk3, Jun-Mei Li, Mei-Yan Ye, Chaofeng Wang, Xiao-Han Ma, Ni-Ni Wu, Chen-Li Zhong, Yanjun Zhang, Ninghui Cheng, Paul A. Nakata, Lirong Zeng, Jian-Zhong Liu Mar 2023

Soybean GmSaul1, A Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely Through Repressing The Activation Of GmMpk3, Jun-Mei Li, Mei-Yan Ye, Chaofeng Wang, Xiao-Han Ma, Ni-Ni Wu, Chen-Li Zhong, Yanjun Zhang, Ninghui Cheng, Paul A. Nakata, Lirong Zeng, Jian-Zhong Liu

Center for Plant Science Innovation: Faculty and Staff Publications

E3 ubiquitin ligases play important roles in plant immunity, but their role in soybean has not been investigated previously. Here, we used Bean pod mottle virus (BPMV)-mediated virusinduced gene silencing (VIGS) to investigate the function of GmSAUL1 (Senescence-Associated E3 Ubiquitin Ligase 1) homologs in soybean. When two closely related SAUL1 homologs were silenced simultaneously, the soybean plants displayed autoimmune phenotypes, which were significantly alleviated by high temperature, suggesting that GmSAUL1a/1b might be guarded by an R protein. Interestingly, silencing GmSAUL1a/1b resulted in the decreased activation of GmMPK6, but increased activation of GmMPK3 in response to flg22, …


Genome Assembly Of The Brassicaceae Diploid Orychophragmus Violaceus Reveals Complex Whole-Genome Duplication And Evolution Of Dihydroxy Fatty Acid Metabolism, Fan Huang, Peng Chen, Xinyu Tang, Ting Zhong, Taihua Yang, Chinedu Charles Nwafor, Chao Yang, Xianhong Ge, Hong An, Zaiyun Li, Edgar B. Cahoon, Chunyu Zhang Mar 2023

Genome Assembly Of The Brassicaceae Diploid Orychophragmus Violaceus Reveals Complex Whole-Genome Duplication And Evolution Of Dihydroxy Fatty Acid Metabolism, Fan Huang, Peng Chen, Xinyu Tang, Ting Zhong, Taihua Yang, Chinedu Charles Nwafor, Chao Yang, Xianhong Ge, Hong An, Zaiyun Li, Edgar B. Cahoon, Chunyu Zhang

Center for Plant Science Innovation: Faculty and Staff Publications

Orychophragmus violaceus is a Brassicaceae species widely cultivated in China, particularly as a winter cover crop in northern China because of its low-temperature tolerance and low water demand. Recently, O. violaceus has also been cultivated as a potential industrial oilseed crop because of its abundant 24- carbon dihydroxy fatty acids (diOH-FAs), which contribute to superior high-temperature lubricant properties. In this study, we performed de novo assembly of the O. violaceus genome. Whole-genome synteny analysis of the genomes of its relatives demonstrated that O. violaceus is a diploid that has undergone an extra whole-genome duplication (WGD) after the Brassicaceae-specific α-WGD event, …


Plant Breeding Advancements With “Crispr-Cas” Genome Editing Technologies Will Assist Future Food Security, M. Ahmad Mar 2023

Plant Breeding Advancements With “Crispr-Cas” Genome Editing Technologies Will Assist Future Food Security, M. Ahmad

Center for Plant Science Innovation: Faculty and Staff Publications

Genome editing techniques are being used to modify plant breeding, which might increase food production sustainably by 2050. A product made feasible by genome editing is becoming better known, because of looser regulation and widespread acceptance. The world’s population and food supply would never have increased proportionally under current farming practices. The development of plants and food production has been greatly impacted by global warming and climate change. Therefore, minimizing these effects is crucial for agricultural production that is sustainable. Crops are becoming more resilient to abiotic stress because of sophisticated agricultural practices and a better understanding of the abiotic …


Sphingolipid Long-Chain Base Signaling In Compatible And Non-Compatible Plant–Pathogen Interactions In Arabidopsis, Mariana Saucedo-García, Ariadna González-Solís, Priscila Rodríguez-Mejía, Guadalupe Lozano-Rosas, Teresa De Jesús Olivera-Flores, Laura Carmona-Salazar, A. Arturo Guevara-García, Edgar B. Cahoon, Marina Gavilanes-Ruíz Feb 2023

Sphingolipid Long-Chain Base Signaling In Compatible And Non-Compatible Plant–Pathogen Interactions In Arabidopsis, Mariana Saucedo-García, Ariadna González-Solís, Priscila Rodríguez-Mejía, Guadalupe Lozano-Rosas, Teresa De Jesús Olivera-Flores, Laura Carmona-Salazar, A. Arturo Guevara-García, Edgar B. Cahoon, Marina Gavilanes-Ruíz

Center for Plant Science Innovation: Faculty and Staff Publications

The chemical diversity of sphingolipids in plants allows the assignment of specific roles to special molecular species. These roles include NaCl receptors for glycosylinositolphosphoceramides or second messengers for long-chain bases (LCBs), free or in their acylated forms. Such signaling function has been associated with plant immunity, with an apparent connection to mitogen-activated protein kinase 6 (MPK6) and reactive oxygen species (ROS). This work used in planta assays with mutants and fumonisin B1 (FB1) to generate varying levels of endogenous sphingolipids. This was complemented with in planta pathogenicity tests using virulent and avirulent Pseudomonas syringae strains. Our results indicate that the …


Genomics And Transcriptomics To Protect Rice (Oryza Sativa L.) From Abiotic Stressors: -Pathways To Achieving Zero Hunger, Mushtaq Ahmad Oct 2022

Genomics And Transcriptomics To Protect Rice (Oryza Sativa L.) From Abiotic Stressors: -Pathways To Achieving Zero Hunger, Mushtaq Ahmad

Center for Plant Science Innovation: Faculty and Staff Publications

More over half of the world’s population depends on rice as a major food crop. Rice (Oryza sativa L.) is vulnerable to abiotic challenges including drought, cold, and salinity since it grown in semi-aquatic, tropical, or subtropical settings. Abiotic stress resistance has bred into rice plants since the earliest rice cultivation techniques. Prior to the discovery of the genome, abiotic stressrelated genes were identified using forward genetic methods, and abiotic stress-tolerant lines have developed using traditional breeding methods. Dynamic transcriptome expression represents the degree of gene expression in a specific cell, tissue, or organ of an individual organism at …


Variation In Morpho‑Physiological And Metabolic Responses To Low Nitrogen Stress Across The Sorghum Association Panel, Marcin Grzybowski, Mackenzie Zwiener, Mackenzie Zwiener, Hongyu Jin, Nuwan K. Wijewardane, Abbas Atefi, Michael J. Naldrett, Sophie Alvarez, Yufeng Ge, James C. Schnable Sep 2022

Variation In Morpho‑Physiological And Metabolic Responses To Low Nitrogen Stress Across The Sorghum Association Panel, Marcin Grzybowski, Mackenzie Zwiener, Mackenzie Zwiener, Hongyu Jin, Nuwan K. Wijewardane, Abbas Atefi, Michael J. Naldrett, Sophie Alvarez, Yufeng Ge, James C. Schnable

Center for Plant Science Innovation: Faculty and Staff Publications

Background: Access to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists both within and between plant species. However, our understanding of changes in different phenotypes under long term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited.

Results: Here we quantified variation in the metabolic, physiological, and morphological responses of a sorghum association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the relationship …


Insect Pest Management With Sex Pheromone Precursors From Engineered Oilseed Plants, Hong-Lei Wang, Bao-Jian Ding, Jian-Qing Dai, Tara J. Nazarenus, Rafael Borges, Agenor Mafra-Neto, Edgar B. Cahoon, Per Hofvander, Sten Stymne, Christer Löfstedt Jul 2022

Insect Pest Management With Sex Pheromone Precursors From Engineered Oilseed Plants, Hong-Lei Wang, Bao-Jian Ding, Jian-Qing Dai, Tara J. Nazarenus, Rafael Borges, Agenor Mafra-Neto, Edgar B. Cahoon, Per Hofvander, Sten Stymne, Christer Löfstedt

Center for Plant Science Innovation: Faculty and Staff Publications

Pheromones have become an environmentally friendly alternative to conventional insecticides for pest control. Most current pheromone-based pest control products target lepidopteran pests of high-value crops, as today’s manufacturing processes cannot yet produce pheromones at low enough costs to enable their use for lower-value crops, especially commodity crops. Camelina sativa seeds genetically modified to express (Z)-11-hexadecenoic acid, a sex pheromone precursor of several moth species, provided the oil from which the precursor was isolated, purified and transformed into the final pheromone. Trap lures containing this pheromone were then assessed for their capacity to manage moth pests in the field. Plant-derived pheromone …


Genetic And Biochemical Investigation Of Seed Fatty Acid Accumulation In Arabidopsis, Chinedu Charles Nwafor, Delin Li, Ping Qin, Long Li, Wei Zhang, Yuanwei Zhou, Jingjing Xu, Yongtai Yin, Jianbo Cao, Limin He, Fu Xiang, Chao Liu, Liang Guo, Yongming Zhou, Edgar B. Cahoon, Chunyu Zhang Jul 2022

Genetic And Biochemical Investigation Of Seed Fatty Acid Accumulation In Arabidopsis, Chinedu Charles Nwafor, Delin Li, Ping Qin, Long Li, Wei Zhang, Yuanwei Zhou, Jingjing Xu, Yongtai Yin, Jianbo Cao, Limin He, Fu Xiang, Chao Liu, Liang Guo, Yongming Zhou, Edgar B. Cahoon, Chunyu Zhang

Center for Plant Science Innovation: Faculty and Staff Publications

As a vegetable oil, consisting principally of triacylglycerols, is the major storage form of photosynthetically-fixed carbon in oilseeds which are of significant agricultural and industrial value. Photosynthesis in chlorophyll-containing green seeds, along with photosynthesis in leaves and other green organs, generates ATP and reductant (NADPH and NADH) needed for seed fatty acid production. However, contribution of seed photosynthesis to fatty acid accumulation in seeds have not been well-defined. Here, we report the contribution of seed-photosynthesis to fatty acid production by probing segregating green (photosynthetically-competent) and non-green or yellow (photosynthetically-non-competent) seeds in siliques of an Arabidopsis chlorophyll synthase mutant. Using this …


The Pho1;2a'-M1.1 Allele Of Phosphate1 Conditions Misregulation Of The Phosphorus Starvation Response In Maize (Zea Mays Ssp. Mays L.), Ana Laura Alonso-Nieves, M. Nancy Salazar-Vidal, J. Vladimir Torres-Rodríguez, Leonardo M. Pérez-Vázquez, Julio A. Massange-Sánchez, C. Stewart Gillmor, Ruairidh J. H. Sawers Jun 2022

The Pho1;2a'-M1.1 Allele Of Phosphate1 Conditions Misregulation Of The Phosphorus Starvation Response In Maize (Zea Mays Ssp. Mays L.), Ana Laura Alonso-Nieves, M. Nancy Salazar-Vidal, J. Vladimir Torres-Rodríguez, Leonardo M. Pérez-Vázquez, Julio A. Massange-Sánchez, C. Stewart Gillmor, Ruairidh J. H. Sawers

Center for Plant Science Innovation: Faculty and Staff Publications

Plant PHO1 proteins play a central role in the translocation and sensing of inorganic phosphate. The maize (Zea mays ssp. mays) genome encodes two co-orthologs of the Arabidopsis PHO1 gene, designated ZmPho1;2a and ZmPho1;2b. Here, we report the characterization of the transposon footprint allele Zmpho1;2a'-m1.1, which we refer to hereafter as pho1;2a. The pho1;2a allele is a stable derivative formed by excision of an Activator transposable element from the ZmPho1;2a gene. The pho1;2a allele contains an 8-bp insertion at the point of transposon excision that disrupts the reading frame and is predicted to …


Divergent Evolution Of Extreme Production Of Variant Plant Monounsaturated Fatty Acids, Lu Gan, Kiyoul Park, Jin Chai, Evan M. Updike, Hyojin Kim, Adam Voshall, Sairam Behera, Xiao-Hong Yu, Yuanheng Cai, Chunyu Zhang, Mark A. Wilson, Jeffrey P. Mower, Etsuko Moriyama, Chi Zhang, Sireewan Kaewsuwan, Qun Liu, John Shanklin, Edgar B. Cahoon Jun 2022

Divergent Evolution Of Extreme Production Of Variant Plant Monounsaturated Fatty Acids, Lu Gan, Kiyoul Park, Jin Chai, Evan M. Updike, Hyojin Kim, Adam Voshall, Sairam Behera, Xiao-Hong Yu, Yuanheng Cai, Chunyu Zhang, Mark A. Wilson, Jeffrey P. Mower, Etsuko Moriyama, Chi Zhang, Sireewan Kaewsuwan, Qun Liu, John Shanklin, Edgar B. Cahoon

Center for Plant Science Innovation: Faculty and Staff Publications

Metabolic extremes provide opportunities to understand enzymatic and metabolic plasticity and biotechnological tools for novel biomaterial production. We discovered that seed oils of many Thunbergia species contain up to 92% of the unusual monounsaturated petroselinic acid (18:1Δ6), one of the highest reported levels for a single fatty acid in plants. Supporting the biosynthetic origin of petroselinic acid, we identified a Δ6-stearoyl-acyl carrier protein (18:0-ACP) desaturase from Thunbergia laurifolia, closely related to a previously identified Δ6-palmitoyl-ACP desaturase that produces sapienic acid (16:1Δ6)- rich oils in Thunbergia alata seeds. Guided by a T. laurifolia desaturase crystal structure obtained in this study, …


Association Mapping Across A Multitude Of Traits Collected In Diverse Environments In Maize, Ravi V. Mural, Guangchao Sun, Marcin Grzybowski, Michael C. Tross, Hongyu Jin, Christine Smith, Linsey Newton, Carson M. Andorf, Margaret R. Woodhouse, Addie M. Thompson, Brandi Sigmon, James C. Schnable May 2022

Association Mapping Across A Multitude Of Traits Collected In Diverse Environments In Maize, Ravi V. Mural, Guangchao Sun, Marcin Grzybowski, Michael C. Tross, Hongyu Jin, Christine Smith, Linsey Newton, Carson M. Andorf, Margaret R. Woodhouse, Addie M. Thompson, Brandi Sigmon, James C. Schnable

Center for Plant Science Innovation: Faculty and Staff Publications

Classical genetic studies have identified many cases of pleiotropy where mutations in individual genes alter many different phenotypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential to identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by plant genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits. High-density genetic marker data—18M markers—from 2 partially overlapping maize association panels comprising 1,014 unique genotypes grown in field trials across at least 7 US states and scored for 162 …


Identification And Characterization Of Circular Rnas In Brassica Rapa In Response To Plasmodiophora Brassicae, Huishan Liu, Chinedu Charles Nwafor, Yinglan Piao, Xiaonan Li, Zongxiang Zhan, Zhongyun Piao Apr 2022

Identification And Characterization Of Circular Rnas In Brassica Rapa In Response To Plasmodiophora Brassicae, Huishan Liu, Chinedu Charles Nwafor, Yinglan Piao, Xiaonan Li, Zongxiang Zhan, Zhongyun Piao

Center for Plant Science Innovation: Faculty and Staff Publications

Plasmodiophora brassicae is a soil-borne pathogen that attacks the roots of cruciferous plants and causes clubroot disease. CircRNAs are noncoding RNAs, widely existing in plant and animal species. Although knowledge of circRNAs has been updated continuously and rapidly, information about circRNAs in the regulation of clubroot disease resistance is extremely limited in Brassica rapa. Here, Chinese cabbage (BJN 222) containing clubroot resistance genes (CRa) against P. brassicae Pb4 was susceptible to PbE. To investigate the mechanism of cicRNAs responsible for clubroot disease resistance in B. rapa, circRNA-seq was performed with roots of ‘BJN 222’ at 0, 8, and 23 days …


Expression Of Atwri1 And Atdgat1 During Soybean Embryo Development Influences Oil And Carbohydrate Metabolism, Cintia Lucía Arias, Truyen Quach, Tu Huynh, Hanh Nguyen, Ademar Moretti, Yu Shi, Ming Guo, Amira Rasoul, Kyujung Van, Leah Mchale, Thomas E. Clemente, Ana Paula Alonso, Chi Zhang Mar 2022

Expression Of Atwri1 And Atdgat1 During Soybean Embryo Development Influences Oil And Carbohydrate Metabolism, Cintia Lucía Arias, Truyen Quach, Tu Huynh, Hanh Nguyen, Ademar Moretti, Yu Shi, Ming Guo, Amira Rasoul, Kyujung Van, Leah Mchale, Thomas E. Clemente, Ana Paula Alonso, Chi Zhang

Center for Plant Science Innovation: Faculty and Staff Publications

Soybean oil is one of the most consumed vegetable oils worldwide. Genetic improvement of its concentration in seeds has been historically pursued due to its direct association with its market value. Engineering attempts aiming to increase soybean seed oil presented different degrees of success that varied with the genetic design and the specific variety considered. Understanding the embryo’s responses to the genetic modifications introduced, is a critical step to successful approaches. In this work, the metabolic and transcriptional responses to AtWRI1 and AtDGAT1 expression in soybean seeds were evaluated. AtWRI1 is a master regulator of fatty acid (FA) biosynthesis, and …


Fddm1 And Fddm2, Two Sgs3-Like Proteins, Function As A Complex To Affect Dna Methylation In Arabidopsis, Shengjun Li, Weilong Yang, Yunfeng Liu, Guangyong Li, Xiang Liu, Yaling Liu, James R. Alfano, Chi Zhang, Bin Yu Jan 2022

Fddm1 And Fddm2, Two Sgs3-Like Proteins, Function As A Complex To Affect Dna Methylation In Arabidopsis, Shengjun Li, Weilong Yang, Yunfeng Liu, Guangyong Li, Xiang Liu, Yaling Liu, James R. Alfano, Chi Zhang, Bin Yu

Center for Plant Science Innovation: Faculty and Staff Publications

DNA methylation is an important epigenetic modification required for the specific regulation of gene expression and the maintenance of genome stability in plants and animals. However, the mechanism of DNA demethylation remains largely unknown. Here, we show that two SGS3-like proteins, FACTOR OF DNA DEMETHYLATION 1 (FDDM1) and FDDM2, negatively affect the DNA methylation levels at ROS1-dependend DNA loci in Arabidopsis. FDDM1 binds dsRNAs with 50 overhangs through its XS (rice gene X and SGS3) domain and forms a heterodimer with FDDM2 through its XH (rice gene X Homology) domain. A lack of FDDM1 or FDDM2 increased DNA methylation levels …


Qteller: A Tool For Comparative Multi-Genomic Gene Expression Analysis, Margaret R. Woodhouse, Shatabdi Sen, David Schott, John L. Portwood Ii, Michael Freeling, Justin W. Walley, Carson M. Andorf, James Schnable Jan 2022

Qteller: A Tool For Comparative Multi-Genomic Gene Expression Analysis, Margaret R. Woodhouse, Shatabdi Sen, David Schott, John L. Portwood Ii, Michael Freeling, Justin W. Walley, Carson M. Andorf, James Schnable

Center for Plant Science Innovation: Faculty and Staff Publications

Motivation: Over the last decade, RNA-Seq whole-genome sequencing has become a widely used method for measuring and understanding transcriptome-level changes in gene expression. Since RNA-Seq is relatively inexpensive, it can be used on multiple genomes to evaluate gene expression across many different conditions, tissues and cell types. Although many tools exist to map and compare RNA-Seq at the genomics level, few web-based tools are dedicated to making data generated for individual genomic analysis accessible and reusable at a gene-level scale for comparative analysis between genes, across different genomes and meta-analyses. Results: To address this challenge, we revamped the comparative gene …


Hyperspectral Reflectance-Based Phenotyping For Quantitative Genetics In Crops: Progress And Challenges, Marcin Grzybowski, Kuwan K. Wijewardane, Abbas Atefi, Yufeng Ge, James C. Schnable Oct 2021

Hyperspectral Reflectance-Based Phenotyping For Quantitative Genetics In Crops: Progress And Challenges, Marcin Grzybowski, Kuwan K. Wijewardane, Abbas Atefi, Yufeng Ge, James C. Schnable

Center for Plant Science Innovation: Faculty and Staff Publications

Many biochemical and physiological properties of plants that are of interest to breeders and geneticists have extremely low throughput and/or can only be measured destructively. This has limited the use of information on natural variation in nutrient and metabolite abundance, as well as photosynthetic capacity in quantitative genetic contexts where it is necessary to collect data from hundreds or thousands of plants. A number of recent studies have demonstrated the potential to estimate many of these traits from hyperspectral reflectance data, primarily in ecophysiological contexts. Here, we summarize recent advances in the use of hyperspectral reflectance data for plant phenotyping, …


Toward Sustainable Production Of Value-Added Bioenergy And Industrial Oils In Oilseed And Biomass Feedstocks, Kiyoul Park, Sanju A. Sanjaya, Truyen Quach, Edgar B. Cahoon Jun 2021

Toward Sustainable Production Of Value-Added Bioenergy And Industrial Oils In Oilseed And Biomass Feedstocks, Kiyoul Park, Sanju A. Sanjaya, Truyen Quach, Edgar B. Cahoon

Center for Plant Science Innovation: Faculty and Staff Publications

Plant fatty acids are used forfood, feed, fuel, and industrial materials. Structurally and chemically diverse fatty acids, referred to as unusual or specialized fatty acids, are found in the seed oils of diverse plant species. Many unusual fatty acids have potential use as alternative and renewable sources of biofuels and biobased industrial feedstocks due to their variant structures' physical or functional properties. Oils enriched in these fatty acids can increase the value of oilseed crops and provide co-products that can be readily extracted from lignocellulosic materials in biomass crops. Here, we describe recent progress in strategies for enhancement of oil …


Disruption Of Long-Chain Base Hydroxylation Alters Growth And Impacts Sphingolipid Synthesis In Physcomitrella Patens, Abraham R. Steinberger, William Oscar Merino, Rebecca E. Cahoon, Edgar B. Cahoon, Daniel V. Lynch Jun 2021

Disruption Of Long-Chain Base Hydroxylation Alters Growth And Impacts Sphingolipid Synthesis In Physcomitrella Patens, Abraham R. Steinberger, William Oscar Merino, Rebecca E. Cahoon, Edgar B. Cahoon, Daniel V. Lynch

Center for Plant Science Innovation: Faculty and Staff Publications

Sphingolipids have roles as membrane structural components and as bioactive molecules in plants. In Physcomitrella patens, 4-hydroxysphinganine (phytosphingosine, t18:0) is the predominant sphingolipid long-chain base (LCB). To assess the functional significance of t18:0, CRISPR-Cas9 mutagenesis was used to generate mutant lines lacking the sole SPHINGOID BASE HYDROXYLASE (SBH) gene encoding the hydroxylase responsible for converting sphinganine (d18:0) to t18:0. Total sphingolipid content in sbh protonemata was 2.4-fold higher than in wild-type. Modest changes in glycosyl inositolphosphorylceramide (GIPC) glycosylation patterns occurred. Sphingolipidomic analyses of mutants lacking t18:0 indicated modest alterations in acyl-chain pairing with d18:0 in GIPCs and ceramides, but dramatic …


Quantitative Trait Loci Controlling Agronomic And Biochemical Traits In Cannabis Sativa, Patrick Woods, Brian J. Campbell, Timothy J. Nicodemus, Edgar B. Cahoon, Jack L. Mullen, John K. Mckay May 2021

Quantitative Trait Loci Controlling Agronomic And Biochemical Traits In Cannabis Sativa, Patrick Woods, Brian J. Campbell, Timothy J. Nicodemus, Edgar B. Cahoon, Jack L. Mullen, John K. Mckay

Center for Plant Science Innovation: Faculty and Staff Publications

Understanding the genetic basis of complex traits is a fundamental goal of evolutionary genetics. Yet, the genetics controlling complex traits in many important species such as hemp (Cannabis sativa) remain poorly investigated. Because hemp’s change in legal status with the 2014 and 2018 U.S. Federal Farm Bills, interest in the genetics controlling its numerous agriculturally important traits has steadily increased. To better understand the genetics of agriculturally important traits in hemp, we developed an F2 population by crossing two phenotypically distinct hemp cultivars (Carmagnola and USO31). Using whole-genome sequencing, we mapped quantitative trait loci (QTL) associated with variation …


An Ancient, Light-Dependent Hydrocarbon-Forming Enzyme, Ananya Mukherjee Apr 2021

An Ancient, Light-Dependent Hydrocarbon-Forming Enzyme, Ananya Mukherjee

Center for Plant Science Innovation: Faculty and Staff Publications

No abstract provided.


Compounds Derived From Bacteria Enhance Marine Diatom Growth, Ananya Mukherjee Mar 2021

Compounds Derived From Bacteria Enhance Marine Diatom Growth, Ananya Mukherjee

Center for Plant Science Innovation: Faculty and Staff Publications

No abstract provided.


Predicting Transcriptional Responses To Cold Stress Across Plant Species, Xiaoxi Meng, Zhikai Liang, Xiuru Dai, Yang Zhang, Samira Mahboub, Daniel W. Ngu, Rebecca Roston, James Schnable Mar 2021

Predicting Transcriptional Responses To Cold Stress Across Plant Species, Xiaoxi Meng, Zhikai Liang, Xiuru Dai, Yang Zhang, Samira Mahboub, Daniel W. Ngu, Rebecca Roston, James Schnable

Center for Plant Science Innovation: Faculty and Staff Publications

Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genome …