Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Genetic Insulator For Preventing Influence By Another Gene Promoter, Susheng Gan, Mingtang Xie Oct 2009

Genetic Insulator For Preventing Influence By Another Gene Promoter, Susheng Gan, Mingtang Xie

Plant and Soil Sciences Faculty Patents

A 16 bp polynucleotide sequence of Arabidopsis thaliana is a genetic insulator that can effectively isolate a transgene from positional effects of neighboring gene activities in transgenic plant cells.


Inhibition Of Rna Recruitment And Replication Of An Rna Virus By Acridine Derivatives With Known Anti-Prion Activities, Zsuzsanna Sasvari, Stéphane Bach, Marc Blondel, Peter D. Nagy Oct 2009

Inhibition Of Rna Recruitment And Replication Of An Rna Virus By Acridine Derivatives With Known Anti-Prion Activities, Zsuzsanna Sasvari, Stéphane Bach, Marc Blondel, Peter D. Nagy

Plant Pathology Faculty Publications

BACKGROUND: Small molecule inhibitors of RNA virus replication are potent antiviral drugs and useful to dissect selected steps in the replication process. To identify antiviral compounds against Tomato bushy stunt virus (TBSV), a model positive stranded RNA virus, we tested acridine derivatives, such as chlorpromazine (CPZ) and quinacrine (QC), which are active against prion-based diseases.

METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that CPZ and QC compounds inhibited TBSV RNA accumulation in plants and in protoplasts. In vitro assays revealed that the inhibitory effects of these compounds were manifested at different steps of TBSV replication. QC was shown to have an effect …


Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An Jun 2009

Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An

Dartmouth Scholarship

Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe3+; these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency. The OsYSL15 promoter fusion to β-glucuronidase showed that it was expressed in all root tissues when Fe was limited. In low-Fe leaves, the promoter became active in all tissues except epidermal cells. This activity was also detected in flowers and seeds. The OsYSL15:green …


A Discontinuous Rna Platform Mediates Rna Virus Replication: Building An Integrated Model For Rna-Based Regulation Of Viral Processes, Baodong Wu, Judit Pogany, Hong Na, Beth L. Nicholson, Peter D. Nagy, K. Andrew White Mar 2009

A Discontinuous Rna Platform Mediates Rna Virus Replication: Building An Integrated Model For Rna-Based Regulation Of Viral Processes, Baodong Wu, Judit Pogany, Hong Na, Beth L. Nicholson, Peter D. Nagy, K. Andrew White

Plant Pathology Faculty Publications

Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA-RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA-RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA-based interaction spanning approximately 3000 nts. In vivo …


Evolution Of Genome Size And Complexity In Pinus., Alison M. Morse, Daniel G. Peterson, M. Nurul Islam-Faridi, Katherine E. Smith, Zenaida V. Magbanua, Saul A. Garcia, Thomas L. Kubisiak, Henry V. Amerson, John E. Carlson, C. Dana Nelson, John M. Davis Feb 2009

Evolution Of Genome Size And Complexity In Pinus., Alison M. Morse, Daniel G. Peterson, M. Nurul Islam-Faridi, Katherine E. Smith, Zenaida V. Magbanua, Saul A. Garcia, Thomas L. Kubisiak, Henry V. Amerson, John E. Carlson, C. Dana Nelson, John M. Davis

College of Agriculture & Life Sciences Publications and Scholarship

BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible …