Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 35

Full-Text Articles in Entire DC Network

Forage News [2019-12], Department Of Plant And Soil Sciences, University Of Kentucky Dec 2019

Forage News [2019-12], Department Of Plant And Soil Sciences, University Of Kentucky

Forage News

No abstract provided.


Glycerol-3-Phosphate Mediates Rhizobia-Induced Systemic Signaling In Soybean, M. B. Shine, Qing-Ming Gao, R. V. Chowda-Reddy, Asheesh K. Singh, Pradeep Kachroo, Aardra Kachroo Nov 2019

Glycerol-3-Phosphate Mediates Rhizobia-Induced Systemic Signaling In Soybean, M. B. Shine, Qing-Ming Gao, R. V. Chowda-Reddy, Asheesh K. Singh, Pradeep Kachroo, Aardra Kachroo

Plant Pathology Faculty Publications

Glycerol-3-phosphate (G3P) is a well-known mobile regulator of systemic acquired resistance (SAR), which provides broad spectrum systemic immunity in response to localized foliar pathogenic infections. We show that G3P-derived foliar immunity is also activated in response to genetically-regulated incompatible interactions with nitrogen-fixing bacteria. Using gene knock-down we show that G3P is essential for strain-specific exclusion of non-desirable root-nodulating bacteria and the associated foliar pathogen immunity in soybean. Grafting studies show that while recognition of rhizobium incompatibility is root driven, bacterial exclusion requires G3P biosynthesis in the shoot. Biochemical analyses support shoot-to-root transport of G3P during incompatible rhizobia interaction. We describe …


Forage News [2019-11], Department Of Plant And Soil Sciences, University Of Kentucky Nov 2019

Soil Net Nitrogen Mineralisation Across Global Grasslands, A. C. Risch, S. Zimmerman, R. Ochoa-Hueso, M. Schütz, B. Frey, J. L. Firn, P. A. Fay, F. Hagedorn, E. T. Borer, E. W. Seabloom, W. S. Harpole, J. M. H. Knops, Rebecca L. Mcculley, A. A. D. Broadbent, C. J. Stevens, M. L. Silveria, P. B. Adler, S. Báez, L. A. Biederman, J. M. Blair Oct 2019

Soil Net Nitrogen Mineralisation Across Global Grasslands, A. C. Risch, S. Zimmerman, R. Ochoa-Hueso, M. Schütz, B. Frey, J. L. Firn, P. A. Fay, F. Hagedorn, E. T. Borer, E. W. Seabloom, W. S. Harpole, J. M. H. Knops, Rebecca L. Mcculley, A. A. D. Broadbent, C. J. Stevens, M. L. Silveria, P. B. Adler, S. Báez, L. A. Biederman, J. M. Blair

Plant and Soil Sciences Faculty Publications

Soil nitrogen mineralisation (Nmin), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net Nmin) varies with soil properties and climate. However, because most global-scale assessments of net Nmin are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net Nmin across 30 grasslands worldwide. We find that realised Nmin is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. …


Herbicide, Douglas D. Archbold, Marta Nosarzewski Oct 2019

Herbicide, Douglas D. Archbold, Marta Nosarzewski

Horticulture Faculty Patents

Provided herein are SDH substrates that have use as herbicides in treating pre-emergent and post-emergent weed control. The presently-disclosed subject matter includes an herbicide including SDH substrates such as ribitol and a growth inhibitive effective amount of another adjuvant SDH substrate and/or adjuvant. Methods of treating pre-emergent and post-emergent weeds comprising applying the herbicides disclosed herein in an effective amount to suppress weed growth are also provided.


Forage News [2019-10], Department Of Plant And Soil Sciences, University Of Kentucky Oct 2019

Forage News [2019-09], Department Of Plant And Soil Sciences, University Of Kentucky Sep 2019

Alteration Of Tobacco Alkaloid Content Through Modification Of Specific Cytochrome P450 Genes, Ralph E. Dewey, Balazs Siminszky, Steven W. Bowen, Lily Gavilano Aug 2019

Alteration Of Tobacco Alkaloid Content Through Modification Of Specific Cytochrome P450 Genes, Ralph E. Dewey, Balazs Siminszky, Steven W. Bowen, Lily Gavilano

Plant and Soil Sciences Faculty Patents

Compositions and methods for reducing the level of nornicotine and N'-nitrosonomicotine (NNN) in Nicotiana plants and plant parts thereof are provided. The compositions comprise isolated polynucleotides and polypeptides for cytochrome P450s that are involved in the metabolic conversion of nicotine to nornicotine in these plants. Expression cassettes, vectors, plants, and plant parts thereof comprising inhibitory sequences that target expression or function of the disclosed cytochrome P450 polypeptides are also provided. Methods for the use of these novel sequences to inhibit expression or function of cytochrome P450 polypeptides involved in this metabolic conversion are also provided. The methods find use in …


Forage News [2019-08], Department Of Plant And Soil Sciences, University Of Kentucky Aug 2019

Forage News [2019-07], Department Of Plant And Soil Sciences, University Of Kentucky Jul 2019

Climate Change Impacts On Winter Wheat Yield In Northern China, Xiu Geng, Fang Wang, Wei Ren, Zhixin Hao Jun 2019

Climate Change Impacts On Winter Wheat Yield In Northern China, Xiu Geng, Fang Wang, Wei Ren, Zhixin Hao

Plant and Soil Sciences Faculty Publications

Exploring the impacts of climate change on agriculture is one of important topics with respect to climate change. We quantitatively examined the impacts of climate change on winter wheat yield in Northern China using the Cobb–Douglas production function. Utilizing time-series data of agricultural production and meteorological observations from 1981 to 2016, the impacts of climatic factors on wheat production were assessed. It was found that the contribution of climatic factors to winter wheat yield per unit area (WYPA) was 0.762–1.921% in absolute terms. Growing season average temperature (GSAT) had a negative impact on WYPA for the period of 1981–2016. A …


Genome Of The Tropical Plant Marchantia Inflexa: Implications For Sex Chromosome Evolution And Dehydration Tolerance, Rose A. Marks, Jeramiah J. Smith, Quentin Cronk, Christopher J. Grassa, D. Nicholas Mcletchie Jun 2019

Genome Of The Tropical Plant Marchantia Inflexa: Implications For Sex Chromosome Evolution And Dehydration Tolerance, Rose A. Marks, Jeramiah J. Smith, Quentin Cronk, Christopher J. Grassa, D. Nicholas Mcletchie

Biology Faculty Publications

We present a draft genome assembly for the tropical liverwort, Marchantia inflexa, which adds to a growing body of genomic resources for bryophytes and provides an important perspective on the evolution and diversification of land plants. We specifically address questions related to sex chromosome evolution, sexual dimorphisms, and the genomic underpinnings of dehydration tolerance. This assembly leveraged the recently published genome of related liverwort, M. polymorpha, to improve scaffolding and annotation, aid in the identification of sex-linked sequences, and quantify patterns of sequence differentiation within Marchantia. We find that genes on sex chromosomes are under greater …


Meta-Analysis Of Yield Response Of Foliar Fungicide-Treated Hybrid Corn In The United States And Ontario, Canada, Kiersten A. Wise, Damon Smith, Anna Freije, Daren S. Mueller, Yuba Kandel, Tom Allen, Carl A. Bradley, Emmanuel Byamukama, Martin Chilvers, Travis Faske, Andrew Friskop, Clayton Hollier, Tamra A. Jackson-Ziems, Heather Kelly, Bob Kemerait, Paul Price Iii, Alison Robertson, Albert Tenuta Jun 2019

Meta-Analysis Of Yield Response Of Foliar Fungicide-Treated Hybrid Corn In The United States And Ontario, Canada, Kiersten A. Wise, Damon Smith, Anna Freije, Daren S. Mueller, Yuba Kandel, Tom Allen, Carl A. Bradley, Emmanuel Byamukama, Martin Chilvers, Travis Faske, Andrew Friskop, Clayton Hollier, Tamra A. Jackson-Ziems, Heather Kelly, Bob Kemerait, Paul Price Iii, Alison Robertson, Albert Tenuta

Plant Pathology Faculty Publications

Background

Foliar fungicide applications to corn (Zea mays L.) occur at one or more application timings ranging from early vegetative growth stages to mid-reproductive stages. Previous studies indicated that fungicide applications are profitable under high disease pressure when applied during the tasseling to silking growth stages. Few comprehensive studies in corn have examined the impact of fungicide applications at an early vegetative growth stage (V6) compared to late application timings (VT) for yield response and return on fungicide investment (ROI) across multiple locations.

Objective

Compare yield response of fungicide application timing across multiple fungicide classes and calculate the probability …


Forage News [2019-06], Department Of Plant And Soil Sciences, University Of Kentucky Jun 2019

Root Hair Single Cell Type Specific Profiles Of Gene Expression And Alternative Polyadenylation Under Cadmium Stress, Jingyi Cao, Congting Ye, Guijie Hao, Carole Dabney-Smith, Arthur G. Hunt, Qingshun Q. Li May 2019

Root Hair Single Cell Type Specific Profiles Of Gene Expression And Alternative Polyadenylation Under Cadmium Stress, Jingyi Cao, Congting Ye, Guijie Hao, Carole Dabney-Smith, Arthur G. Hunt, Qingshun Q. Li

Plant and Soil Sciences Faculty Publications

Transcriptional networks are tightly controlled in plant development and stress responses. Alternative polyadenylation (APA) has been found to regulate gene expression under abiotic stress by increasing the heterogeneity at mRNA 3′-ends. Heavy metals like cadmium pollute water and soil due to mining and industry applications. Understanding how plants cope with heavy metal stress remains an interesting question. The Arabidopsis root hair was chosen as a single cell model to investigate the functional role of APA in cadmium stress response. Primary root growth inhibition and defective root hair morphotypes were observed. Poly(A) tag (PAT) libraries from single cell types, i.e., root …


Water Permeability/Impermeability In Seeds Of 15 Species Of Caragana (Fabaceae), Dali Chen, Rui Zhang, Carol C. Baskin, Xiaowen Hu May 2019

Water Permeability/Impermeability In Seeds Of 15 Species Of Caragana (Fabaceae), Dali Chen, Rui Zhang, Carol C. Baskin, Xiaowen Hu

Biology Faculty Publications

Majority legumes in the temperate and arctic zones have water-impermeable seeds (physical dormancy, PY). However, various authors have reported that seeds of some Caragana species are water-permeable and thus non-dormant. We (1) tested seeds of 15 species of Caragana matured in the same site in 2014, 2016 and/or 2017 for presence of PY, (2) determined if dry storage decreased or increased the percentage of seeds with PY and (3) located the site on the seed coat of 11 species where water enters the seed. Sixty-three percent and 45% of the seeds of C. roborovskyi had PY in 2016 and 2017, …


Forage News [2019-05], Department Of Plant And Soil Sciences, University Of Kentucky May 2019

Common Garden Experiment Reveals Altered Nutritional Values And Dna Methylation Profiles In Micropropagated Three Elite Ghanaian Sweet Potato Genotypes, Belinda Akomeah, Marian D. Quain, Sunita A. Ramesh, Lakshay Anand, Carlos M. Rodríguez López Apr 2019

Common Garden Experiment Reveals Altered Nutritional Values And Dna Methylation Profiles In Micropropagated Three Elite Ghanaian Sweet Potato Genotypes, Belinda Akomeah, Marian D. Quain, Sunita A. Ramesh, Lakshay Anand, Carlos M. Rodríguez López

Horticulture Faculty Publications

Micronutrient deficiency is the cause of multiple diseases in developing countries. Staple crop biofortification is an efficient means to combat such deficiencies in the diets of local consumers. Biofortified lines of sweet potato (Ipomoea batata L. Lam) with enhanced beta-carotene content have been developed in Ghana to alleviate Vitamin A Deficiency. These genotypes are propagated using meristem micropropagation to ensure the generation of virus-free propagules. In vitro culture exposes micropropagated plants to conditions that can lead to the accumulation of somaclonal variation with the potential to generate unwanted aberrant phenotypes. However, the effect of micropropagation induced somaclonal variation on …


Gamete Nuclear Migration In Animals And Plants, Umma Fatema, Mohammad F. Ali, Zheng Hu, Anthony J. Clark, Tomokazu Kawashima Apr 2019

Gamete Nuclear Migration In Animals And Plants, Umma Fatema, Mohammad F. Ali, Zheng Hu, Anthony J. Clark, Tomokazu Kawashima

Plant and Soil Sciences Faculty Publications

The migration of male and female gamete nuclei to each other in the fertilized egg is a prerequisite for the blending of genetic materials and the initiation of the next generation. Interestingly, many differences have been found in the mechanism of gamete nuclear movement among animals and plants. Female to male gamete nuclear movement in animals and brown algae relies on microtubules. By contrast, in flowering plants, the male gamete nucleus is carried to the female gamete nucleus by the filamentous actin cytoskeleton. As techniques have developed from light, electron, fluorescence, immunofluorescence, and confocal microscopy to live-cell time-lapse imaging using …


Trans-Cinnamic Acid-Induced Leaf Expansion Involves An Auxin-Independent Component, Jasmina Kurepa, Jan A. Smalle Apr 2019

Trans-Cinnamic Acid-Induced Leaf Expansion Involves An Auxin-Independent Component, Jasmina Kurepa, Jan A. Smalle

Plant and Soil Sciences Faculty Publications

The phenylpropanoid pathway, the source of a large array of compounds with diverse functions, starts with the synthesis of trans-cinnamic acid (t-CA) that is converted by cinnamate-4-hydroxylase (C4H) into p-coumaric acid. We have recently shown that in Arabidopsis, exogenous t-CA promotes leaf growth by increasing cell expansion and that this response requires auxin signaling. We have also shown that cell expansion is increased in C4H loss-of-function mutants. Here we provide further evidence that leaf growth is enhanced by either t-CA or a t-CA derivative that accumulates upstream of C4H. We also show that …


Improved Draft Genome Sequence Of Bacillus Sp. Strain Yf23, Which Has Plant Growth-Promoting Activity, Ye Xia, Seth Debolt, Qin Ma, Adam Mcdermaid, Cankun Wang, Nicole Shapiro, Tanja Woyke, Nikos C. Kyrpides Apr 2019

Improved Draft Genome Sequence Of Bacillus Sp. Strain Yf23, Which Has Plant Growth-Promoting Activity, Ye Xia, Seth Debolt, Qin Ma, Adam Mcdermaid, Cankun Wang, Nicole Shapiro, Tanja Woyke, Nikos C. Kyrpides

Horticulture Faculty Publications

We report here the improved draft genome sequence of Bacillus sp. strain YF23, a bacterium originally isolated from switchgrass (Panicum virgatum) plants and shown to exhibit plant growth-promoting activity. The genome comprised 5.82 Mbp, containing 5,933 genes, with 193 as RNA genes, and a GC content of 35.10%.


Surface-Controlled Dissolution Rates: A Case Study Of Nanoceria In Carboxylic Acid Solutions, Eric A. Grulke, Matthew J. Beck, Robert A. Yokel, Jason M. Unrine, Uschi M. Graham, Matthew L. Hancock Apr 2019

Surface-Controlled Dissolution Rates: A Case Study Of Nanoceria In Carboxylic Acid Solutions, Eric A. Grulke, Matthew J. Beck, Robert A. Yokel, Jason M. Unrine, Uschi M. Graham, Matthew L. Hancock

Chemical and Materials Engineering Faculty Publications

Nanoparticle dissolution in local milieu can affect their ecotoxicity and therapeutic applications. For example, carboxylic acid release from plant roots can solubilize nanoceria in the rhizosphere, affecting cerium uptake in plants. Nanoparticle dispersions were dialyzed against ten carboxylic acid solutions for up to 30 weeks; the membrane passed cerium-ligand complexes but not nanoceria. Dispersion and solution samples were analyzed for cerium by inductively coupled plasma mass spectrometry (ICP-MS). Particle size and shape distributions were measured by transmission electron microscopy (TEM). Nanoceria dissolved in all carboxylic acid solutions, leading to cascades of progressively smaller nanoparticles and producing soluble products. The dissolution …


Effects Of Increased Precipitation On The Life History Of Spring- And Autumn-Germinated Plants Of The Cold Desert Annual Erodium Oxyrhynchum (Geraniaceae), Yanfeng Chen, Xiang Shi, Lingwei Zhang, Jerry M. Baskin, Carol C. Baskin, Huiliang Liu, Daoyuan Zhang Apr 2019

Effects Of Increased Precipitation On The Life History Of Spring- And Autumn-Germinated Plants Of The Cold Desert Annual Erodium Oxyrhynchum (Geraniaceae), Yanfeng Chen, Xiang Shi, Lingwei Zhang, Jerry M. Baskin, Carol C. Baskin, Huiliang Liu, Daoyuan Zhang

Biology Faculty Publications

Future increased precipitation in cold desert ecosystems may impact annual/ephemeral plant species that germinate in both spring and autumn. Our primary aim was to compare the life history characteristics of plants from spring-germinating (SG) and autumn-germinating (AG) seeds of Erodium oxyrhynchum. Plants in field plots with simulated increases in precipitation of 0, 30 and 50 % in spring and summer were monitored to determine seedling survival, phenology, plant size, seed production and biomass accumulation and allocation. Germination characteristics were determined in the laboratory for seeds produced by plants in all increased precipitation treatments. Increased precipitation in spring significantly improved survival …


Forage News [2019-04], Department Of Plant And Soil Sciences, University Of Kentucky Apr 2019

Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai Mar 2019

Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai

Entomology Faculty Publications

Pesticides have revolutionized the modern day of agriculture and substantially reduced crop losses. Synthetic pesticides pose a potential risk to the ecosystem and to the non-target organisms due to their persistency and bioaccumulation in the environment. In recent years, a light-mediated advanced oxidation processes (AOPs) has been adopted to resolve pesticide residue issues in the field. Among the current available semiconductors, titanium dioxide (TiO2) is one of the most promising photocatalysts. In this study, we investigated the photocatalytic degradation of profenofos and triazophos residues in Chinese cabbage, Brassica chinensis, using a Cerium-doped nano semiconductor TiO2 (TiO …


Impact Of Row Spacing, Sowing Density And Nitrogen Fertilization On Yield And Quality Traits Of Chia (Salvia Hispanica L.) Cultivated In Southwestern Germany, Samantha J. Grimes, Timothy D. Phillips, Filippo Capezzone, Simone Graeff-Hönninger Mar 2019

Impact Of Row Spacing, Sowing Density And Nitrogen Fertilization On Yield And Quality Traits Of Chia (Salvia Hispanica L.) Cultivated In Southwestern Germany, Samantha J. Grimes, Timothy D. Phillips, Filippo Capezzone, Simone Graeff-Hönninger

Plant and Soil Sciences Faculty Publications

To obtain high chia seed yields and seed qualities, a suitable crop management system needs to be developed for the given growing conditions in southwestern Germany. Field experiments were conducted at the experimental station Ihinger Hof in two consecutive years (2016, 2017). The study aimed to evaluate yield and quality traits of chia depending on different (i) row spacing (35, 50 and 75 cm), (ii) sowing densities (1, 1.5 and 2 kg ha−1) and, (iii) N-fertilization rates (0, 20 and 40 kg N ha−1). It consisted of three independent, completely randomized field experiments with three replications. …


Nitrogen Fertilizer Suppresses Mineralization Of Soil Organic Matter In Maize Agroecosystems, Navreet K. Mahal, William R. Osterholz, Fernando E. Miguez, Hanna J. Poffenbarger, John E. Sawyer, Daniel C. Olk, Sotirios V. Archontoulis, Michael J. Castellano Mar 2019

Nitrogen Fertilizer Suppresses Mineralization Of Soil Organic Matter In Maize Agroecosystems, Navreet K. Mahal, William R. Osterholz, Fernando E. Miguez, Hanna J. Poffenbarger, John E. Sawyer, Daniel C. Olk, Sotirios V. Archontoulis, Michael J. Castellano

Plant and Soil Sciences Faculty Publications

The possibility that N fertilizer increases soil organic matter (SOM) mineralization and, as a result, reduces SOM stocks has led to a great debate about the long-term sustainability of maize-based agroecosystems as well as the best method to estimate fertilizer N use efficiency (FNUE). Much of this debate is because synthetic N fertilizer can positively or negatively affect SOM mineralization via several direct and indirect pathways. Here, we test a series of hypotheses to determine the direction, magnitude, and mechanism of N fertilizer effect on SOM mineralization and discuss the implications for methods to estimate FNUE. We measured the effect …


Assessing Variation In Us Soybean Seed Composition (Protein And Oil), Yared Assefa, Larry C. Purcell, Montse Salmeron, Seth Naeve, Shaun N. Casteel, Péter Kovács, Sotirios Archontoulis, Mark Licht, Fred Below, Herman Kandel, Laura E. Lindsey, John Gaska, Shawn Conley, Charles Shapiro, John M. Orlowski, Bobby R. Golden, Gurpreet Kaur, Maninderpal Singh, Kurt Thelen, Randall Laurenz, Dan Davidson, Ignacio A. Ciampitti Mar 2019

Assessing Variation In Us Soybean Seed Composition (Protein And Oil), Yared Assefa, Larry C. Purcell, Montse Salmeron, Seth Naeve, Shaun N. Casteel, Péter Kovács, Sotirios Archontoulis, Mark Licht, Fred Below, Herman Kandel, Laura E. Lindsey, John Gaska, Shawn Conley, Charles Shapiro, John M. Orlowski, Bobby R. Golden, Gurpreet Kaur, Maninderpal Singh, Kurt Thelen, Randall Laurenz, Dan Davidson, Ignacio A. Ciampitti

Plant and Soil Sciences Faculty Publications

Soybean [Glycine max (L.) Merr.] seed composition and yield are a function of genetics (G), environment (E), and management (M) practices, but contribution of each factor to seed composition and yield are not well understood. The goal of this synthesis-analysis was to identify the main effects of G, E, and M factors on seed composition (protein and oil concentration) and yield. The entire dataset (13,574 data points) consisted of 21 studies conducted across the United States (US) between 2002 and 2017 with varying treatments and all reporting seed yield and composition. Environment (E), defined as site-year, was the dominant …


Forage News [2019-03], Department Of Plant And Soil Sciences, University Of Kentucky Mar 2019

Oxidative Stress-Induced Formation Of Covalently Linked Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Large Subunit Dimer In Tobacco Plants, Jasmina Kurepa, Jan A. Smalle Feb 2019

Oxidative Stress-Induced Formation Of Covalently Linked Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Large Subunit Dimer In Tobacco Plants, Jasmina Kurepa, Jan A. Smalle

Plant and Soil Sciences Faculty Publications

Objective: Many abiotic stresses cause the excessive accumulation of reactive oxygen species known as oxidative stress. While analyzing the effects of oxidative stress on tobacco, we noticed the increased accumulation of a specific protein in extracts from plants treated with the oxidative-stress inducing herbicide paraquat which promotes the generation of reactive oxygen species primarily in chloroplasts. The primary objectives of this study were to identify this protein and to determine if its accumulation is indeed a result of oxidative stress.

Results: Here we show that the paraquat-induced protein is a covalently linked dimer of the large subunit of ribulose-1,5-bisphosphate carboxylase …