Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

PDF

Selected Works

Selected Works

Land use change

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Assessing The Potential To Decrease The Gulf Of Mexico Hypoxic Zone With Midwest Us Perennial Cellulosic Feedstock Production, Andy Vanloocke, Tracy E. Twine, Christopher J. Kucharik, Carl J. Bernacchi Jan 2017

Assessing The Potential To Decrease The Gulf Of Mexico Hypoxic Zone With Midwest Us Perennial Cellulosic Feedstock Production, Andy Vanloocke, Tracy E. Twine, Christopher J. Kucharik, Carl J. Bernacchi

Andy VanLoocke

The goal of this research was to determine the changes in streamflow, dissolved inorganic nitrogen (DIN) leaching and export to the Gulf of Mexico associated with a range of large-scale dedicated perennial cellulosic bioenergy production scenarios within in the Mississippi–Atchafalaya River Basin (MARB). To achieve this goal, we used Agro-IBIS, a vegetation model capable of simulating the biogeochemistry of row crops, miscanthus and switchgrass, coupled with THMB, a hydrology model capable of simulating streamflow and DIN export. Simulations were conducted at varying fertilizer application rates (0–200 kg N ha -1) and fractional replacement (5–25%) of current row crops with miscanthus …


A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi May 2015

A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi

Andy VanLoocke

The production of cellulosic feedstocks for renewable fuels will increase over the coming decades. However, it is uncertain which feedstocks will be best suited for bioenergy production. A key factor dictating feedstock selection for a given region is water use efficiency (WUE), the trade-off between evapotranspiration (ET) and carbon uptake or productivity. Using an ecosystem model, two of the top candidate cellulosic feedstocks, Miscanthus × giganteus (miscanthus) and Panicum virgatum(switchgrass) were compared to Zea mays L. (maize), the existing dominant bioenergy feedstock, with 0 and 25% residue removal for the Midwest US. We determined productivity in three ways: harvested yield …


The Biophysical Link Between Climate, Water, And Vegetation In Bioenergy Agro-Ecosystems, Justin E. Bagley, Sarah C. Davis, Matei Georgescu, Mir Zaman Hussain, Jesse Miller, Stephen W. Nesbitt, Andy Vanloocke, Carl J. Bernacchi May 2015

The Biophysical Link Between Climate, Water, And Vegetation In Bioenergy Agro-Ecosystems, Justin E. Bagley, Sarah C. Davis, Matei Georgescu, Mir Zaman Hussain, Jesse Miller, Stephen W. Nesbitt, Andy Vanloocke, Carl J. Bernacchi

Andy VanLoocke

Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes …


The Biophysical Link Between Climate, Water, And Vegetation In Bioenergy Agro-Ecosystems, Andy Vanloocke, Justin E. Bagley, Sarah C. Davis, Mir Zaman Hussain, Jesse Miller, Stephen W. Nesbitt, Carl J. Bernacchi Nov 2014

The Biophysical Link Between Climate, Water, And Vegetation In Bioenergy Agro-Ecosystems, Andy Vanloocke, Justin E. Bagley, Sarah C. Davis, Mir Zaman Hussain, Jesse Miller, Stephen W. Nesbitt, Carl J. Bernacchi

Andy VanLoocke

Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes …


A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi Sep 2012

A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi

Andy VanLoocke

The production of cellulosic feedstocks for renewable fuels will increase over the coming decades. However, it is uncertain which feedstocks will be best suited for bioenergy production. A key factor dictating feedstock selection for a given region is water use efficiency (WUE), the trade-off between evapotranspiration (ET) and carbon uptake or productivity. Using an ecosystem model, two of the top candidate cellulosic feedstocks, Miscanthus × giganteus (miscanthus) and Panicum virgatum (switchgrass) were compared to Zea mays L. (maize), the existing dominant bioenergy feedstock, with 0 and 25% residue removal for the Midwest US. We determined productivity in three ways: harvested …


The Impacts Of Miscanthus×Giganteus Production On The Midwest Us Hydrologic Cycle, Andy Vanloocke, Carl J. Bernacchi, Tracy E. Twine Jul 2010

The Impacts Of Miscanthus×Giganteus Production On The Midwest Us Hydrologic Cycle, Andy Vanloocke, Carl J. Bernacchi, Tracy E. Twine

Andy VanLoocke

Perennial grasses are being considered as candidates for biofuel feedstocks to provide an alternative energy source to fossil fuels. Miscanthus×giganteus (miscanthus), in particular, is a grass that is predicted to provide more energy per sown area than corn ethanol and reduce net carbon dioxide emissions by increasing the storage of carbon belowground. Miscanthus uses more water than Zea mays (maize), mainly as a result of a longer growing season and higher productivity. Conversion of current land use for miscanthus production will likely disrupt regional hydrologic cycles, yet the magnitude, timing, and spatial distribution of effects are unknown. Here, we show …