Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

PDF

Dartmouth College

Plant roots

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Myb10 And Myb72 Are Required For Growth Under Iron-Limiting Conditions, Christine M. Palmer, Maria N. Hindt, Holger Schmidt, Stephan Clemens, Mary Lou Guerinot Nov 2013

Myb10 And Myb72 Are Required For Growth Under Iron-Limiting Conditions, Christine M. Palmer, Maria N. Hindt, Holger Schmidt, Stephan Clemens, Mary Lou Guerinot

Dartmouth Scholarship

Iron is essential for photosynthesis and is often a limiting nutrient for plant productivity. Plants respond to conditions of iron deficiency by increasing transcript abundance of key genes involved in iron homeostasis, but only a few regulators of these genes have been identified. Using genome-wide expression analysis, we searched for transcription factors that are induced within 24 hours after transferring plants to iron-deficient growth conditions. Out of nearly 100 transcription factors shown to be up-regulated, we identified MYB10 and MYB72 as the most highly induced transcription factors. Here, we show that MYB10 and MYB72 are functionally redundant and are required …


Dirigent Domain-Containing Protein Is Part Of The Machinery Required For Formation Of The Lignin-Based Casparian Strip In The Root, Prashant S. Hosmani, Takehiro Kamiya, John Danku, Sadaf Naseer, Niko Geldner, Mary Lou Guerinot, David Salt Aug 2013

Dirigent Domain-Containing Protein Is Part Of The Machinery Required For Formation Of The Lignin-Based Casparian Strip In The Root, Prashant S. Hosmani, Takehiro Kamiya, John Danku, Sadaf Naseer, Niko Geldner, Mary Lou Guerinot, David Salt

Dartmouth Scholarship

The endodermis acts as a "second skin" in plant roots by providing the cellular control necessary for the selective entry of water and solutes into the vascular system. To enable such control, Casparian strips span the cell wall of adjacent endodermal cells to form a tight junction that blocks extracellular diffusion across the endodermis. This junction is composed of lignin that is polymerized by oxidative coupling of monolignols through the action of a NADPH oxidase and peroxidases. Casparian strip domain proteins (CASPs) correctly position this biosynthetic machinery by forming a protein scaffold in the plasma membrane at the site where …


Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An Jun 2009

Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An

Dartmouth Scholarship

Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe3+; these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency. The OsYSL15 promoter fusion to β-glucuronidase showed that it was expressed in all root tissues when Fe was limited. In low-Fe leaves, the promoter became active in all tissues except epidermal cells. This activity was also detected in flowers and seeds. The OsYSL15:green …


A Novel Iron-Regulated Metal Transporter From Plants Identified By Functional Expression In Yeast., David Eide, Margaret Broderius, Jeanette Fett, Mary Lou Guerinot May 1996

A Novel Iron-Regulated Metal Transporter From Plants Identified By Functional Expression In Yeast., David Eide, Margaret Broderius, Jeanette Fett, Mary Lou Guerinot

Dartmouth Scholarship

Iron is an essential nutrient for virtually all organisms. The IRT1 (iron-regulated transporter) gene of the plant Arabidopsis thaliana, encoding a probable Fe(II) transporter, was cloned by functional expression in a yeast strain defective for iron uptake. Yeast expressing IRT1 possess a novel Fe(II) uptake activity that is strongly inhibited by Cd. IRT1 is predicted to be an integral membrane protein with a metal-binding domain. Data base comparisons and Southern blot analysis indicated that IRT1 is a member of a gene family in Arabidopsis. Related sequences were also found in the genomes of rice, yeast, nematodes, and humans. In Arabidopsis, …