Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Entire DC Network

Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn E. Merrill, Bingjie Zhang, Jerry Larue May 2020

Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn E. Merrill, Bingjie Zhang, Jerry Larue

Student Scholar Symposium Abstracts and Posters

Catalysis provides pathways for efficient and selective chemical reactions through the lowering of energy barriers for desired products. Gold nanoparticles (AuNP) show excellent promise as plasmonic catalysts. Localized surface plasmon resonances are oscillations of the electron bath at the surface of a nanoparticle that generate energetically intense electric fields and rapidly decay into energetically excited electrons. The excited electrons have the potential to destabilize strongly bound oxygen atoms through occupation of accessible anti-bonding orbitals. Tuning the anti-bonding orbitals to make them accessible for occupancy will be achieved by coating the AuNP in a thin layer of another transition metal, such …


Structural And Permeability Characterization Of Zn-Li Ferrites, M H Mesbah Ahmed, A. K. M. Akther Hossain, Shamima Choudhury Jan 2018

Structural And Permeability Characterization Of Zn-Li Ferrites, M H Mesbah Ahmed, A. K. M. Akther Hossain, Shamima Choudhury

Turkish Journal of Physics

Structural characterization and magnetic properties of Zn-substituted Li ferrites with composition \linebreak Zn$_{x}$Li$_{0.45-x/2}$Fe$_{2.55-x/2}$O$_{4}$ (where x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) were studied by varying sintering temperature T$_{S}$ (where T$_{S}$ = 1000, 1050, 1100, 1150, 1200, and 1250 $^{\circ}$C) of the six samples. The single-phase cubic spinel structure was found by XRD patterns and scanning electron microscopy revealed the microstructure of all the samples. Permeability (real, $\mu_{i}'$ and imaginary, $\mu _{i}'')$ was found to increase with Zn substitution and also with sintering temperature. The real part of initial permeability ($\mu_{i}')$ was found to depend on the density and …


Comparative Study Of Cv3 Carbonaceous Chondrites Allende And Bali Using Micro-Raman Spectroscopy And Sem/Eds, Raka Paul Jan 2018

Comparative Study Of Cv3 Carbonaceous Chondrites Allende And Bali Using Micro-Raman Spectroscopy And Sem/Eds, Raka Paul

All Graduate Theses, Dissertations, and Other Capstone Projects

The birth of the solar system (over 4 billion years) is speculated to have happened from a nebula, swirling and compacting in localized regions to eventually form the Sun and planets. This complex process consists of numerous changes and intermediary steps, yet to be fully understood. Carbonaceous chondritic meteorites are relics of that process and therefore have potential to reveal information about the formation history. Several theories have been formulated linking their composition to planet formation. This study focusses on two carbonaceous chondritic specimens, Allende and Bali, both of the group CV and petrologic type 3. CV meteorites are abundant …


Compositional And Topographical Characterization Of Carbonaceous Chondritic Meteorites Moss And Murray Using Micro-Raman Spectroscopy And Sem/Eds, Aaron Stokke Jan 2018

Compositional And Topographical Characterization Of Carbonaceous Chondritic Meteorites Moss And Murray Using Micro-Raman Spectroscopy And Sem/Eds, Aaron Stokke

All Graduate Theses, Dissertations, and Other Capstone Projects

Carbonaceous chondritic meteorites are considered some of the most primitive surviving materials from the formation of our solar system. Thus, these objects can provide information about planet formation through their physical properties (such as structure, composition, and morphology) which can be characterized using microscopy and spectroscopy techniques. In this work, the analytical methods of Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and optical microscopy are applied to determine the mineralogical, topographical, and elemental compositions of two carbonaceous chondritic fragments: Moss and Murray. Both samples were comprised of chondrules and matrix while Moss contained chondrule rims and Murray …


Using Principal Component Analysis To Improve Fallout Characterization, Derek W. Haws Mar 2017

Using Principal Component Analysis To Improve Fallout Characterization, Derek W. Haws

Theses and Dissertations

Previous research conducted at Lawrence Livermore National Laboratory (LLNL) and the Air Force Institute of Technology (AFIT) has shown a correlation between actinide location and elemental composition in fallout from historic weapons testing. Fifty spherical fallout samples were collected from near ground zero of a surface burst weapons test. The samples were mounted in an aluminum puck then ground and polished to a hemisphere exposing the central plane. Physical morphologies of the samples ranged from clear to opaque with inclusions, voids, and/or uniform characteristics. Spectroscopy data were collected using optical microscopes and scanning electron microscopy (SEM), with radioactivity recorded through …


Direct Imaging Of Coexisting Ordered And Frustrated Sublattices In Artificial Ferromagnetic Quasicrystals, Barry Farmer, Vinayak Shantaram Bhat, Eric Teipel, J. Unguris, D. J. Keavney, Jeffrey Todd Hastings, Lance E. De Long Apr 2016

Direct Imaging Of Coexisting Ordered And Frustrated Sublattices In Artificial Ferromagnetic Quasicrystals, Barry Farmer, Vinayak Shantaram Bhat, Eric Teipel, J. Unguris, D. J. Keavney, Jeffrey Todd Hastings, Lance E. De Long

Physics and Astronomy Faculty Publications

We have used scanning electron microscopy with polarization analysis and photoemission electron microscopy to image the two-dimensional magnetization of permalloy films patterned into Penrose P2 tilings (P2T). The interplay of exchange interactions in asymmetrically coordinated vertices and short-range dipole interactions among connected film segments stabilize magnetically ordered, spatially distinct sublattices that coexist with frustrated sublattices at room temperature. Numerical simulations that include long-range dipole interactions between sublattices agree with images of as-grown P2T samples and predict a magnetically ordered ground state for a two-dimensional quasicrystal lattice of classical Ising spins.


Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam Jan 2015

Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam

Guru Subramanyam

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673–1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the …


Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali Jan 2015

Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali

Applied Research Center Publications

Cu (In,Ga,Al)Se2 (CIGAS) thin films were studied as an alternative absorber layer material to Cu(InxGa1-x)Se2. CIGAS thin films with varying Al content were prepared by magnetron sputtering on Si(100) and soda-lime glass substrates at 350 °C, followed by postdeposition annealing at 520 °C for 5 h in vacuum. The film composition was measured by an electron probe microanalyzer while the elemental depth profiles were determined by secondary ion mass spectrometry. X-ray diffraction studies indicated that CIGAS films are single phase with chalcopyrite structure and that the (112) peak clearly shifts to higher 2θ …


Measurement Of Semiconductor Surface Potential Using The Scanning Electron Microscope, Jennifer T. Heath, Chun-Sheng Jiang, Mowafak M. Al-Jassim Jan 2012

Measurement Of Semiconductor Surface Potential Using The Scanning Electron Microscope, Jennifer T. Heath, Chun-Sheng Jiang, Mowafak M. Al-Jassim

Faculty Publications

We calibrate the secondary electron signal from a standard scanning electron microscope to voltage, yielding an image of the surface or near-surface potential. Data on both atomically abrupt heterojunction GaInP/GaAs and diffused homojunction Si solar cell devices clearly show the expected variation in potential with position and applied bias, giving depletion widths and locating metallurgical junctions to an accuracy better than 10 nm. In some images, distortion near the p-n junction is observed, seemingly consistent with the effects of lateral electric fields (patch fields). Reducing the tube bias removes this distortion. This approach results in rapid and straightforward collection of …


The Density Factor In The Synthesis Of Carbon Nanotube Forest By Injection Chemical Vapor Deposition, Robert W. Call, C. Read, C Mart, T. C. Shen Jan 2012

The Density Factor In The Synthesis Of Carbon Nanotube Forest By Injection Chemical Vapor Deposition, Robert W. Call, C. Read, C Mart, T. C. Shen

Graduate Student Publications

Beneath the seeming straight-forwardness of growing carbon nanotube(CNT) forests by the injection chemical vapor deposition(CVD) method, control of the forest morphology on various substrates is yet to be achieved. Using ferrocene dissolved in xylene as the precursor, we demonstrate that the concentration of ferrocene and the injection rate of the precursor dictate the CNT density of these forests. However, CNT density will also be affected by the substrates and the growth temperature which determine the diffusion of the catalyst adatoms. The CNT growth rate is controlled by the temperature and chemical composition of the gases in the CVD reactor. We …


Electric Field Tunable Magnetic Properties Of Lead-Free Na0.5bi0.5tio3/Cofe2o4 Multiferroic Composites, S Narendra Babu, Seong Gi Min, Leszek Malkinski Jan 2011

Electric Field Tunable Magnetic Properties Of Lead-Free Na0.5bi0.5tio3/Cofe2o4 Multiferroic Composites, S Narendra Babu, Seong Gi Min, Leszek Malkinski

Physics Faculty Publications

Lead-free multiferroic particulate composites of Na0.5Bi0.5TiO3 (NBT) and CoFe2O4 (CFO) have been synthesized by solid-state sintering method. A systematic study of structural, magnetic and magnetoelectric (ME) properties is undertaken. Structural and morphology studies carried out by x-ray diffraction and field emission scanning electron microscopy indicate formation of single phase for parent phases and presence of both phases in the composites. Magnetic properties are investigated using vibrating sample magnetometer and ferromagnetic resonance (FMR) measurements at room temperature. Strong ME coupling is demonstrated in NBT-CFO 70-30 mol% composite by an electrostatically tunable FMR field …


Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam Feb 2010

Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam

Physics Faculty Publications

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673–1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation …


Morphology, Magnetic And Dynamic Properties Of Artificial Structures Assembled By Acoustic Vibrations, K B. Paul, L Malkinski Jan 2009

Morphology, Magnetic And Dynamic Properties Of Artificial Structures Assembled By Acoustic Vibrations, K B. Paul, L Malkinski

Physics Faculty Publications

Cobalt micromagnetic particles with an average size of ≈ 1.6 μm and varying total mass of the powder were assembled on patterned media with perpendicular magnetization by acoustic vibrations onto designed shapes reflecting the primary material. The replicas were studied with scanning electron microscopy, vibrating sample magnetometry, and ferromagnetic resonance spectroscopy. Their properties were significantly influenced by the shape anisotropy induced through the parent molds. A tendency in the development of the physical characteristics of the replicas was observed as their geometrical parameters changed.


Solid Phase Crystallization Of Vanadium Dioxide Thin Films And Characterization Through Scanning Electron Microscopy, Felipe Rivera Dec 2007

Solid Phase Crystallization Of Vanadium Dioxide Thin Films And Characterization Through Scanning Electron Microscopy, Felipe Rivera

Theses and Dissertations

Crystalline films of vanadium dioxide were obtained through thermal annealing of amorphous vanadium dioxide thin films sputtered on silicon dioxide. An annealing process was found that yielded polycrystalline vanadium dioxide thin films, semi-continuous thin films, and films of isolated single-crystal particles. Orientation Imaging Microscopy (OIM) was used to characterize and study the phase and the orientation of the vanadium dioxide crystals obtained, as well as to diferentiate them from other vanadium oxide stoichiometries that may have formed during the annealing process. There was no evidence of any other vanadium oxides present in the prepared samples. Indexing of the crystals for …


Study Of A Growth Instability Of Γ-In[Sub 2]Se[Sub 3], C. Amory, J. C. Bernede, S. Marsillac Jan 2003

Study Of A Growth Instability Of Γ-In[Sub 2]Se[Sub 3], C. Amory, J. C. Bernede, S. Marsillac

Electrical & Computer Engineering Faculty Publications

γ-In[sub 2]Se[sub 3] thin film are deposited for various substrate temperatures in the range of 523–673 K. This study shows that at 573 and 673 K the thin films are well crystallized with grains aligned along the c axis. Between these temperatures, a domain of instability appears where the γ-In[sub 2]Se[sub 3] thin films have a randomly orientation and the c-lattice parameter increases. The presence of the metastable phase κ-In[sub 2]Se[sub 3], during the growth, can explain the existence of this domain of instability. The insertion of Zn during the preparation process allows us to stabilize the phase κ at …


Reflection High-Energy Electron-Diffraction Study Of Melting And Solidification Of Pb On Graphite, Z. H. Zhang, P. Kulatunga, H. E. Elsayed-Ali Jan 1997

Reflection High-Energy Electron-Diffraction Study Of Melting And Solidification Of Pb On Graphite, Z. H. Zhang, P. Kulatunga, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The melting and solidification of Pb thin films on pyrolytic graphite are investigated in situ by reflection high-energy electron diffraction. Thin films with thicknesses of 4-150 monolayers are investigated. The surface morphology of the thin films were studied by scanning electron microscopy. Superheating of the Pb thin films by 4±2 to 12±2 K is observed from diffraction intensity measurements. Upon cooling the substrate, the Pb on graphite is seen to supercool by ∼69±4 K.


A Loading Device For Fracture Testing Of Compact Tension Specimens In The Scanning Electron Microscope, Jügen Rödel, James F. Kelly, Mark R. Stoudt, Stephen J. Bennison Oct 1990

A Loading Device For Fracture Testing Of Compact Tension Specimens In The Scanning Electron Microscope, Jügen Rödel, James F. Kelly, Mark R. Stoudt, Stephen J. Bennison

Scanning Microscopy

A loading device for performing fracture experiments on compact tension specimens in the SEM has been designed. Its key elements are a piezoelectric translator for applying controlled displacements to the loading points on the specimen and a load cell to measure applied loads. The effective transmission of displacement from the piezoelectric driver to the specimen was found to be the major mechanical design problem. The peripheral equipment includes a function generator and a high voltage amplifier that drives the piezoelectric translator as well as a video overlay and standard video equipment to record the image continuously during the course of …