Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich Oct 2018

Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich

Physics Faculty Publications

Proliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size. However, the stability of driven topological defects remains largely unexplored. Here we address this issue and investigate numerically …


Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, T. J. Carroll, C. I. Sukenik Sep 2018

Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, T. J. Carroll, C. I. Sukenik

Physics Faculty Publications

We have experimentally investigated a catalysis effect in the resonant energy transfer between ultracold 85Rb Rydberg atoms. We studied the time dependence of the process, 34p + 34p → 34s + 35s, and observed an enhancement of 34s state population when 34d state atoms are added. We have also performed numerical model simulations, which are in qualitative agreement with experiment and indicate that the enhancement arises from a redistribution of p-state atoms due to the presence of the d-state atoms.


Developing A Femtosecond Stimulated Raman Spectroscopy Experiment For Solid State Materials, Daniel Hammerland Aug 2018

Developing A Femtosecond Stimulated Raman Spectroscopy Experiment For Solid State Materials, Daniel Hammerland

Electronic Theses and Dissertations

Femtosecond Stimulated Raman Spectroscopy (FSRS) is a ultrafast spectroscopy technique first implemented by chemists to understand isomerization and other ultrafast molecular morphology changes by resolving vibrational dynamics[1, 2, 3]. FSRS has an unparalleled temporal and spectral resolution [4, 1, 5, 6] that arises as a result of a clever combination of picosecond and femtosecond pulses. However, despite this capability, FSRS has yet to be applied to modern materials in condensed matter physics. This thesis explores the design and implementation of FSRS to study two-dimensional materials in order to measure their quantum confined vibrational dynamics on utlrafast time scales.


Emergent Phenomena In Quantum Critical Systems, Kun Chen Jul 2018

Emergent Phenomena In Quantum Critical Systems, Kun Chen

Doctoral Dissertations

A quantum critical point (QCP) is a point in the phase diagram of quantum matter where a continuous phase transition takes place at zero temperature. Low-dimensional quantum critical systems are strongly correlated, therefore hosting nontrivial emergent phenomena. In this thesis, we first address two decades-old problems on quantum critical dynamics. We then reveal two novel emergent phenomena of quantum critical impurity problems. In the first part of the thesis, we address the linear response dynamics of the $(2+1)$-dimensional $O(2)$ quantum critical universality class, which can be realized in the ultracold bosonic system near the superfluid (SF) to Mott insulator (MI) …


Elementary Computational Fluid Dynamics Using Finite-Difference Methods, Jason Turner, Scott Labrake Jun 2018

Elementary Computational Fluid Dynamics Using Finite-Difference Methods, Jason Turner, Scott Labrake

Honors Theses

Fluids permeate all of human existence, and fluid dynamics serves as a rich field of research for many physicists. Although the mathematics involved in studying fluids tends to get complicated, the physical intuition gained through daily exposure to such systems bridges the gap between abstract calculations and their physical meaning. We discuss the mathematical treatment and simulations of fluid flows found in everyday life, such as flow in a cavity and through a pipe. Our discussions follow the example set by several notable texts, referenced in the document.