Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Mountaintop Neutrino Detection: A Nu(Tau) Concept, Caroline E. Paciaroni Nov 2018

Mountaintop Neutrino Detection: A Nu(Tau) Concept, Caroline E. Paciaroni

Physics

High-energy neutrinos traveling from the distant universe produce detectable signals at radio frequencies after interacting with the earth or its atmosphere. This is the principle behind a new experiment, the BEamforming Elevated Array for COsmogenic Neutrinos, or BEACON. BEACON will be a high altitude array of antennas that is sensitive to up-going tau neutrinos ($\nu_{\tau}$). These elementary particles serve as sources of information about the extraordinarily high energy events in the universe that create them, and also the laws of particle physics that govern their behavior. This report details the construction of a transient detector used to characterize site locations …


Gamma-Ray Burst Classification: New Insights From Mining Pulse Data, Stanley Mcafee, Jon Hakkila Jul 2018

Gamma-Ray Burst Classification: New Insights From Mining Pulse Data, Stanley Mcafee, Jon Hakkila

Journal of the South Carolina Academy of Science

Despite being the most energetic electromagnetic explosions in the universe, gamma-ray bursts (GRBs) are still poorly understood. The literature recognizes two potentially different types of GRB progenitors, although statistical data suggest the existence of three GRB classes. Reliable inference of GRB physics depends on the identification of appropriate classification attributes, as well as on the statistical classification techniques used. It has recently been shown that pulses are the basic unit of GRB emission. We use new data describing GRB pulse characteristics, in conjunction with data mining tools, to provide a more reliable gamma-ray burst classification system and place additional constraints …


Using An Astrophysical Model To Characterize Nuclear Dust, Anita N. Dunsmore Mar 2018

Using An Astrophysical Model To Characterize Nuclear Dust, Anita N. Dunsmore

Theses and Dissertations

Dust clouds resulting from nuclear explosions are complex phenomena, and knowledge on how they form is lacking. Noting the similarities between supernovae and nuclear explosions led to the concept of modeling a nuclear dust cloud using a supernova simulation. MOCASSIN uses a Monte Carlo approach to model photons traveling through a dust cloud, allowing the cloud's characteristics to be discovered by comparing an observed spectrum to a calculated one and then changing input values to make the spectra match. Data files describing two nuclear fireballs of varying yields were created and analyzed using MOCASSIN, but yielded zero energy spectra. After …


Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Feb 2018

Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW( …