Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy Aug 2023

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy

Theses and Dissertations

ABSTRACT

SYNTHESIS, CHARACTERIZATION, AND SIMULATION OF TWO-DIMENSIONAL MATERIALS

by

Lawrence Hudy

The University of Wisconsin-Milwaukee, 2023Under the Supervision of Professor Michael Weinert

This dissertation focuses on my journey through many aspects of surface science leading to the first principles investigation of transition metal dichalcogenides studying the impact of defects, twist, and decreasing interlayer separation to probe their effect on the electronic properties of these materials. My journey started out learning many aspects of material science such as methods for material synthesis and characterization but later ended on simulation of material properties using density functional theory. In the first experiments, we …


Analysis And Application Of Finite Element And High-Order Finite Difference Methods For Maxwell’S Equations In Complex Media, Li Zhu May 2023

Analysis And Application Of Finite Element And High-Order Finite Difference Methods For Maxwell’S Equations In Complex Media, Li Zhu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Perfectly Matched Layer (PML) technique is an effective tool introduced by B´erenger [13] to reduce the unbounded wave propagation problem to a bounded domain problem. This dissertation focuses on two different PML models and their applications to wave propagation problems with Maxwell’s equation in complex media. We investigate these models using two popular numerical methods: the Finite Difference Method (FDM) in Chapters 2 and 3, and the Finite Element Method (FEM) in Chapters 4 and 5.In Chapter 2, we focus on analyzing the stability of a PML developed by B’ecache et al. [10] for simulating wave propagation in the …


Analog Cosmology And Superfluidity In Atomic Gases And Electronic Materials, Anshuman Bhardwaj Apr 2023

Analog Cosmology And Superfluidity In Atomic Gases And Electronic Materials, Anshuman Bhardwaj

LSU Doctoral Dissertations

We present a study of analog cosmological models in Bose-Einstein condensates (BEC) and in graphene, and superfluidity in a box-shaped traps. We start by examining the dynamics of a Bose-Einstein condensate (BEC) trapped inside an expanding toroid that can realize an analog inflationary universe. The expanding condensate forces phonons to undergo redshift and damping due to quantum pressure, owing to the thinness of the ring. We predict that such expanding BECs can exhibit spontaneous phonon creation from the vacuum state and show how it would manifest in the atom density and density correlations and discuss connections with the inflationary theory. …


A Study Of Single Molecule Detection With Graphene Hall Bars, Kenneth Stephen Stephenson Apr 2023

A Study Of Single Molecule Detection With Graphene Hall Bars, Kenneth Stephen Stephenson

Theses and Dissertations

In 2007, detection of individual molecules with a solid-state gas sensor was reported for first time by Schedin et al. where they used micromechanically-cleaved graphene for their sensing material, which exhibits isotropic and homogeneous conduction [1]. However, despite the novelty and popularity of their work, it has never been repeated. Further, we found their associated calculations to be self-inconsistent by a factor of 103 . So, hoping to account for and resolve this discrepancy, we outline the plan we had to reproduce their experiment. We also justify any substantial modifications, particularly our choice to use epitaxial graphene instead. Then, we …


Low Energy Photon Detection, Tianyi Guo Jan 2023

Low Energy Photon Detection, Tianyi Guo

Graduate Thesis and Dissertation 2023-2024

Detecting long wave infrared (LWIR) light at room temperature has posed a persistent challenge due to the low energy of photons. The pursuit of an affordable, high-performance LWIR camera capable of room temperature detection has spanned several decades. In the realm of contemporary LWIR detectors, they can be broadly classified into two categories: cooled and uncooled detectors. Cooled detectors, such as MCT detectors, excel in terms of high detectivity and fast response times. However, their reliance on cryogenic cooling significantly escalates their cost and restricts their practical applications. In contrast, uncooled detectors, exemplified by microbolometers, are capable of functioning at …