Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett Nov 2022

Investigation Of Laser And Nonlinear Properties Of Anderson Localizing Optical Fibers, Cody Ryan Bassett

Optical Science and Engineering ETDs

In this dissertation, I investigate the possibility of lasing and nonlinear phenomena in completely solid-state transverse Anderson localizing optical fibers (TALOFs). I examine three areas within this range of topics. The research in nonlinear phenomena focuses on four-wave mixing (FWM). FWM is of high interest in TALOFs due to the fact that guided localized modes of the fiber each have different propagation constants, and thus unique possible FWM pairs can be generated from the same input pump beam. I demonstrate the generation of FWM in the TALOF by pumping it with 532 nm light into a localized mode and observing …


Miniaturized Iii-V/ Si Hybrid Laser With An Integrated Modulator, Praveen Kumar Singaravelu Sep 2022

Miniaturized Iii-V/ Si Hybrid Laser With An Integrated Modulator, Praveen Kumar Singaravelu

Theses

Light interaction with microscopic and nanoscopic structures enable manipulation of its characteristics which can be used to detect objects in 3D sensing, propel satellites to space using photonic propulsion and transmit data through optical communication. For optical communication, the basic components are lasers, modulators and photodetectors. The development of CMOS microfabrication foundries helps to manufacture silicon-based photonic devices with high yield that is directly co-integrated with electronics in a single chip. However, the lack of emission of photons efficiently in silicon propelled the necessity of hybrid photonic devices that inherits the combined advantage of different materials i.e. functionality and volume. …


Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke Aug 2022

Study Of Single-Photon Wave-Packets With Atomically Thin Nonlinear Mirrors, Christopher Klenke

Graduate Theses and Dissertations

A novel controlled phase gate for photonic quantum computing is proposed by exploiting the powerful nonlinear optical responses of atomically thin transition metal dichalcogenides (TMDs) and it is shown that such a gate could elicit a π-rad phase shift in the outgoing electric field only in the case of two incident photons and no other cases. Firstly, the motivation for such a gate is developed and then the implementation of monolayer TMDs is presented as a solution to previous realization challenges. The single-mode case of incident photons upon a TMD is derived and is then used to constrain the more …


Collective Behavior Of Dissipatively-Coupled Photonic Oscillator Networks, Jiajie Ding Jun 2022

Collective Behavior Of Dissipatively-Coupled Photonic Oscillator Networks, Jiajie Ding

Dissertations, Theses, and Capstone Projects

This thesis discusses the collective behavior of networks formed by photonic oscillators. The key motivations for doing this research are the interest in developing high power laser arrays on photonic chips and performing optical computing.