Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Η' Decay To Π+Π-Π+Π, Ehsan Jafari Jan 2018

Η' Decay To Π+Π-Π+Π−, Ehsan Jafari

Theses and Dissertations--Physics and Astronomy

With the use of chiral theory of mesons [1], [2] we evaluate the decay rate of η′ → π+ππ+π. Our theoretical study of this problem is different from the previous theo- retical study [3] and our predicted result is in a good agreement with the experiment. In this chiral theory we evaluate Feynman diagrams up to one loop and the decay rate is calculated with the use of triangle and box diagrams. The ρ0 meson includes in both type of diagrams as a resonance state. Divergent integrals in the loop calculations …


Electronic And Optical Properties Of Metastable Epitaxial Thin Films Of Layered Iridates, Maryam Souri Jan 2018

Electronic And Optical Properties Of Metastable Epitaxial Thin Films Of Layered Iridates, Maryam Souri

Theses and Dissertations--Physics and Astronomy

The layered iridates such as Sr2IrO4 and Sr3Ir2O7, have attracted substantial attention due to their novel electronic states originating from strong spin-orbit coupling and electron-correlation. Recent studies have revealed the possibilities of novel phases such as topological insulators, Weyl semimetals, and even a potential high-Tc superconducting state with a d-wave gap. However, there are still controversial issues regarding the fundamental electronic structure of these systems: the origin of the insulating gap is disputed as arising either from an antiferromagnetic ordering, i.e. Slater scheme or electron-correlation, i.e. Mott scheme. …


Probing The Low-X Gluon Helicity Distribution With Dijet Double Spin Asymmetries In Polarized Proton Collisions At √S = 510 Gev, Suvarna Ramachandran Jan 2018

Probing The Low-X Gluon Helicity Distribution With Dijet Double Spin Asymmetries In Polarized Proton Collisions At √S = 510 Gev, Suvarna Ramachandran

Theses and Dissertations--Physics and Astronomy

The proton is a complex subatomic particle consisting of quarks and gluons, and one of the key questions in nuclear physics is how the spin of the proton is distributed amongst its constituents. Polarized deep inelastic scattering experiments with leptons and protons estimate that the quark spin contribution is approximately 30%. The limited kinematic reach of these experiments, combined with the fact that they are only indirectly sensitive to the electrically neutral gluon, means they can provide very little information about the gluon contribution to the spin of the proton. In contrast, hadronic probes, such as polarized proton collisions provide …


Studies Of Magnetically Induced Faraday Rotation By Polarized Helium-3 Atoms, Joshua Abney Jan 2018

Studies Of Magnetically Induced Faraday Rotation By Polarized Helium-3 Atoms, Joshua Abney

Theses and Dissertations--Physics and Astronomy

Gyromagnetic Faraday rotation offers a new method to probe limits on properties of simple spin systems such as the possible magnetic moment of asymmetric dark matter or as a polarization monitor for polarized targets. Theoretical calculations predict the expected rotations of linearly polarized light due to the magnetization of spin-1/2 particles are close to or beyond the limit of what can currently be measured experimentally (10−9 rad). So far, this effect has not been verified. Nuclear spin polarized 3He provides an ideal test system due to its simple structure and ability to achieve high nuclear spin polarization via …


Determination Of The Neutron Beta-Decay Asymmetry Parameter A Using Polarized Ultracold Neutrons, Michael A.-P. Brown Jan 2018

Determination Of The Neutron Beta-Decay Asymmetry Parameter A Using Polarized Ultracold Neutrons, Michael A.-P. Brown

Theses and Dissertations--Physics and Astronomy

The UCNA Experiment at the Los Alamos Neutron Science Center (LANSCE) is the first measurement of the β-decay asymmetry parameter A0 using polarized ultracold neutrons (UCN). A0 , which represents the parity-violating angular correlation between the direction of the initial neutron spin and the emitted decay electron’s momentum, determines λ = gA /gV , the ratio of the weak axial-vector and vector coupling constants. A high-precision determination of λ is important for weak interaction physics, and when combined with the neutron lifetime it permits an extraction of the CKM matrix element Vud solely …


Structural, Transport, And Topological Properties Induced At Complex-Oxide Hetero-Interfaces, Justin K. Thompson Jan 2018

Structural, Transport, And Topological Properties Induced At Complex-Oxide Hetero-Interfaces, Justin K. Thompson

Theses and Dissertations--Physics and Astronomy

Complex-oxides have seen an enormous amount of attention in the realm of Condensed Matter Physics and Materials Science/Engineering over the last several decades. Their ability to host a wide variety of novel physical properties has even caused them to be exploited commercially as dielectric, metallic and magnetic materials. Indeed, since the discovery of high temperature superconductivity in the “Cuprates” in the late 1980’s there has been an explosion of activity involving complex-oxides. Further, as the experimental techniques and equipment for fabricating thin films and heterostructures of these materials has improved over the last several decades, the search for new and …


Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman Jan 2018

Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman

Theses and Dissertations--Physics and Astronomy

Charge-Conjugation (C) and Charge-Conjugation-Parity (CP) Violation is one of the three Sakharov conditions to explain via baryogenesis the observed baryon asymmetry of the universe (BAU). The Standard Model of particle physics (SM) contains sources of CP violation, but cannot explain the BAU. This motivates searches for new physics beyond the standard model (BSM) which address the Sakharov criteria, including high-precision searches for new sources of CPV in systems for which the SM contribution is small, but larger effects may be present in BSM theories. A promising example is the search for the electric dipole moment of the neutron (nEDM), which …


Nanoscale Devices Consisting Of Heterostructures Of Carbon Nanotubes And Two-Dimensional Layered Materials, Mohsen Nasseri Jan 2018

Nanoscale Devices Consisting Of Heterostructures Of Carbon Nanotubes And Two-Dimensional Layered Materials, Mohsen Nasseri

Theses and Dissertations--Physics and Astronomy

One dimensional carbon nanotubes (CNTs) and two-dimensional layered materials like graphene, MoS2, hexagonal boron nitride (hBN), etc. with different electrical and mechanical properties are great candidates for many applications in the future. In this study the synthesis and growth of carbon nanotubes on both conducting graphene and graphite substrates as well as insulating hBN substrate with precise crystallographic orientation is achieved. We show that the nanotubes have a clear preference to align to specific crystal directions of the underlying graphene or hBN substrate. On thicker flakes of graphite, the edges of these 2D materials can control the orientation …