Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Computational Studies Of Carbon Nanocluster Solidification, Chathuri Chandani Silva Jan 2021

Computational Studies Of Carbon Nanocluster Solidification, Chathuri Chandani Silva

Doctoral Dissertations

“A subset of micron-size meteoritic carbon particles formed in red giant atmospheres show a core-rim structure, likely condensed from a vapor phase into super-cooled carbon droplets that nucleated graphene sheets (~40Å) on randomly oriented 5-atom loops during solidification, followed by coating with a graphite rim. Similar particles form during slow cooling of carbon vapor in the lab.

Here we investigate the nucleation and growth of carbon rings and graphene sheets using density functional theory (DFT). Our objectives: (1). explore different computational techniques in DFT-VASP for various carbon structures and compare the results with literature, (2). investigate the nucleation and growth …


Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski Jan 2021

Semi-Empirical Modeling Of Liquid Carbon's Containerless Solidification, Philip C. Chrostoski

Doctoral Dissertations

“Elemental carbon has important structural diversity, ranging from nanotubes through graphite to diamond. Previous studies of micron-size core/rim carbon spheres extracted from primitive meteorites suggest they formed around such stars via the solidification of condensed carbon-vapor droplets, followed by gas-to-solid carbon coating to form the graphite rims. Similar core/rim particles result from the slow cooling of carbon vapor in the lab. The long-range carbon bond-order potential was used to computationally study liquid-like carbon in (1.8 g/cm3) periodic boundary (tiled-cube supercell) and containerless (isolated cluster) settings. Relaxations via conjugate-gradient and simulated-annealing nucleation and growth simulations using molecular dynamics were …


Computational Modeling Of Defect-Engineered Graphene Derivatives And Graphene-Polymer Nanocomposites, Asanka Weerasinghe Jul 2018

Computational Modeling Of Defect-Engineered Graphene Derivatives And Graphene-Polymer Nanocomposites, Asanka Weerasinghe

Doctoral Dissertations

Graphene has unique mechanical, electronic, and thermal properties, which enable a broad range of technological applications. For example, graphene flakes can be used as filler to enhance the properties of polymer-matrix nanocomposites and graphene derivatives, generated by defect engineering and chemical functionalization of single-layer graphene, have tunable properties that are very promising for engineering electronic and thermomechanical metamaterials. A fundamental understanding of the structure-property relationships that govern the function of such nanocomposites and graphene derivatives is required for designing and developing future graphene-based metamaterials. Toward this end, we have conducted a systematic study based on extensive molecular-dynamics simulations of mechanical …


Antenna Enhanced Graphene Terahertz Emitter And Detector, And Graphene Microwave Detector, Jiayue Tong Jul 2018

Antenna Enhanced Graphene Terahertz Emitter And Detector, And Graphene Microwave Detector, Jiayue Tong

Doctoral Dissertations

Graphene is a promising candidate for optoelectronic and fast electronics research. In THz and sub-THz frequency regime, sensitive detectors are very difficult to make. This dissertation presents my Ph.D study of THz sources and THz/Microwave (MW) detectors made with graphene. My work demonstrates the emission and detection of 1.9 THz radiation from graphene coupled to a double-patch antenna and a silicon lens. More than 3 orders of magnitude performance improvements are achieved in a half-edge-contacted graphene thermoelectric (TE) detector operating at 1.9 THz by antenna coupling and Si lens coupling. The thermoelectric mechanism is also employed in MW detection. A …


Surface Energy In Bond-Counting Models On Bravais And Non-Bravais Lattices, Tim Ryan Krumwiede May 2017

Surface Energy In Bond-Counting Models On Bravais And Non-Bravais Lattices, Tim Ryan Krumwiede

Doctoral Dissertations

Continuum models in computational material science require the choice of a surface energy function, based on properties of the material of interest. This work shows how to use atomistic bond-counting models and crystal geometry to inform this choice. We will examine some of the difficulties that arise in the comparison between these models due to differing types of truncation. New crystal geometry methods are required when considering materials with non-Bravais lattice structure, resulting in a multi-valued surface energy. These methods will then be presented in the context of the two-dimensional material graphene in a way that correctly predicts its equilibrium …


Theoretical Studies Of The Growth And Functionality Of Layered Materials, Wei Chen Aug 2014

Theoretical Studies Of The Growth And Functionality Of Layered Materials, Wei Chen

Doctoral Dissertations

In this thesis, we present several projects on the growth and functionality of layered materials, using density functional theory (DFT) method and phenomenological modeling approach. Beyond the understanding of growth mechanisms and exploration of properties, we propose novel avenues to realize controllable growth processes and layered materials with desirable properties. The contents have three major parts:

(1) Graphene growth on Cu(111) and Ni(111) substrates. We first demonstrate that the inherent multi-orientational degeneracy of the graphene islands on Cu(111) in the early stages of nucleation could result in the prevalence of grain boundaries (GBs). Next, we propose a possible solution to …


Theoretical Modeling Of The Formation And Functionality Of Low-Dimensional Materials, Hua Chen May 2012

Theoretical Modeling Of The Formation And Functionality Of Low-Dimensional Materials, Hua Chen

Doctoral Dissertations

This dissertation presents a series of work under the topic of designing and modeling novel low-dimensional materials and structures with desired and coherent structural, electronic, and magnetic properties, using a variety of theoretical tools, including first-principles density functional theory (DFT) method, numerical Monte Carlo (MC) method, and analytical phenomenological approaches, etc. The contents are divided into three major topics:

(1) Magnetic properties of n-p codoped materials. The noncompensated n-p codoping method is proposed to increase the density of magnetic dopants in diluted magnetic semiconductors (DMS) while keeping the magnetic coupling strength, which may lead to a …


Transport And Optical Properties Of Quantized Low-Dimensional Systems, Xiaoguang Li Aug 2011

Transport And Optical Properties Of Quantized Low-Dimensional Systems, Xiaoguang Li

Doctoral Dissertations

In this thesis, we present a systematic investigation of the static and dynamic response properties of low-dimensional systems, using a variety of theoretical techniques ranging from time dependent density functional theory to the recursive Green's function method.

As typical low-dimensional systems, metal nanostructures can strongly interact with an electric field to support surface plasmons, making their optical properties extremely attractive in both fundamental and applied aspects. We have investigated the energy broadening of surface plasmons in metal structures of reduced dimensionality, where Landau damping is the dominant dissipation channel and presents an intrinsic limitation to plasmonics technology. We show that …


Electron Beam Characterization Of Carbon Nanostructures, Eric Samuel Mandell Jan 2007

Electron Beam Characterization Of Carbon Nanostructures, Eric Samuel Mandell

Doctoral Dissertations

"Atom-thick carbon nanostructures represent a class of novel materials that are of interest to those studying carbon's role in fossil fuel, hydrogen storage, scaled-down electronics, and other nanotechnology. Electron microscope images of "edge-on" graphene sheets show linear image features due to the projected potential of the sheets. Here, intensity profiles along these linear features can measure the curvature of the sheet, as well as the shape of the sheet (i.e. hexagonal, triangular). Also, electron diffraction powder profiles calculated for triangular graphene sheet shapes show a broadening of the low frequency edge of diffraction rings, in comparison to those calculated for …