Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Entire DC Network

Quantum Field Theory In Nontrivial Backgrounds And Particle Production, Yue Qiu Oct 2022

Quantum Field Theory In Nontrivial Backgrounds And Particle Production, Yue Qiu

Doctoral Dissertations

Production of particles from nontrivial backgrounds is an important phenomenon in quantum field theory. In this thesis, we review some useful formulae of Bogoliubov formalism and explain how to derive the spectra of particle production. We then apply the formalism to study several scenarios. We first study the Schwinger effect in compact $(1+1)$ dimensions spacetime. Using the in-in formalism, we compute the correction to the electric field from the creation of charged particles both when the spatial dimension is compact and when it is non-compact. Secondly, we investigate the thermodynamic properties of the Schwarzschild-de Sitter (SdS) system. We explore particle …


Applications Of Statistical Physics To Ecology: Ising Models And Two-Cycle Coupled Oscillators, Vahini Reddy Nareddy Oct 2022

Applications Of Statistical Physics To Ecology: Ising Models And Two-Cycle Coupled Oscillators, Vahini Reddy Nareddy

Doctoral Dissertations

Many ecological systems exhibit noisy period-2 oscillations and, when they are spatially extended, they undergo phase transition from synchrony to incoherence in the Ising universality class. Period-2 cycles have two possible phases of oscillations and can be represented as two states in the bistable systems. Understanding the dynamics of ecological systems by representing their oscillations as bistable states and developing dynamical models using the tools from statistical physics to predict their future states is the focus of this thesis. As the ecological oscillators with two-cycle behavior undergo phase transitions in the Ising universality class, many features of synchrony and equilibrium …


Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei Oct 2022

Synthesis And Assembly Of Polymer Materials At Interfaces, Xiaoshuang Wei

Doctoral Dissertations

The overarching goal of the thesis is to understand growth and assembly of polymer materials at interfaces. Chapter 2 and Chapter 3 study simultaneous polymer growth and assembly at fluid interfaces, where in-situ photopolymerization and vapor phase deposition were utilized to grow polymers, respectively. Chapter 4 leverages capillary condensation to pattern polymer growth at solid substrates. Chapter 1 provides background information on polymer materials at interfaces, and vapor phase deposition method (initiated chemical vapor deposition, iCVD) to grow polymers. This chapter also reviews polymer thin film wetting, and colloidal assemblies at interfaces. In Chapter 2, we demonstrate the preparation …


Symmetry Breaking Effects In Low-Dimensional Quantum Systems, Ke Wang Oct 2022

Symmetry Breaking Effects In Low-Dimensional Quantum Systems, Ke Wang

Doctoral Dissertations

Quantum criticality in low-dimensional quantum systems is known to host exotic behaviors. In quantum one-dimension (1D), the emerging conformal group contains infinite generators, and conformal techniques, e.g., operator product expansion, give accurate and universal descriptions of underlying systems. In quantum two-dimension (2D), the electronic interaction causes singular corrections to Fermi-liquids characteristics. Meanwhile, the Dirac fermions in topological 2D materials can greatly enrich emerging phenomena. In this thesis, we study the symmetry-breaking effects of low-dimensional quantum criticality. In 1D, we consider two cases: time-reversal symmetry (TRS) breaking in the Majorana conformal field theory (CFT) and the absence of conformal symmetry in …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Reservoir Engineering Of Multi-Photon States In Circuit Quantum Electrodynamics, Jeffrey M. Gertler Oct 2022

Reservoir Engineering Of Multi-Photon States In Circuit Quantum Electrodynamics, Jeffrey M. Gertler

Doctoral Dissertations

The field of experimental quantum information has made significant progress towards useful computation but has been handicapped by the dissipative nature of physical qubits. Except for unwieldy and unrealized topological qubits, all quantum information systems experience natural dissipation, which limits the time scale for useful computation. However, this same dissipation, which induces errors requiring quantum error correction (QEC), can be used as a resource to perform a variety of important and unrealized tasks. In this thesis I discuss research into three uses of dissipation: manifold stabilization, state transfer, and QEC. With reservoir engineering, these tasks can be addressed in an …


Anomalous Transport, Quasiperiodicity, And Measurement Induced Phase Transitions, Utkarsh Agrawal Oct 2022

Anomalous Transport, Quasiperiodicity, And Measurement Induced Phase Transitions, Utkarsh Agrawal

Doctoral Dissertations

With the advent of the noisy-intermediate scale quantum (NISQ) era quantum computers are increasingly becoming a reality of the near future. Though universal computation still seems daunting, a great part of the excitement is about using quantum simulators to solve fundamental problems in fields ranging from quantum gravity to quantum many-body systems. This so-called second quantum revolution rests on two pillars. First, the ability to have precise control over experimental degrees of freedom is crucial for the realization of NISQ devices. Significant progress in the control and manipulation of qubits, atoms, and ions, as well as their interactions, has not …


Collective Motion And Phase Diagram Of Self-Propelled Vibrated Hard Squares, Zhejun Shen Jun 2022

Collective Motion And Phase Diagram Of Self-Propelled Vibrated Hard Squares, Zhejun Shen

Doctoral Dissertations

In equilibrium, matter condenses into ordered phases due to the combined effects of inter-particle interactions and entropy. In this dissertation, we explore the self-propulsion of particles as an additional nonequilibrium consideration in the mechanisms for ordering. Our experiments employ square-shaped hard particles; in equilibrium, when particle motions are randomly directed, squares form entropically-stabilized phases in which first their orientations, and then their positions, get locked in relative to each other, depending on the density of coverage. When the square tiles are modified to have small propulsion along some body-fixed axis we find that their tendency to order is profoundly altered. …


Measurement Of The Fiducial Cross Section For Vector-Boson-Fusion Production Of The Higgs Boson In The Ww Decay Channel With The Atlas Detector, Guy Rosin Jun 2022

Measurement Of The Fiducial Cross Section For Vector-Boson-Fusion Production Of The Higgs Boson In The Ww Decay Channel With The Atlas Detector, Guy Rosin

Doctoral Dissertations

This doctoral thesis presents a measurement of the fiducial and differential cross section of vector boson fusion produced Higgs boson.The measurement is taken in the H → WW∗ → lνlν channel with 139 fb−1 of data. Proton-proton collisions from the Large Hadron Collider at √s = 13 TeV were recorded by the ATLAS detector. New analysis techniques using boosted decision trees with a statistical fit are introduced to accurately estimate backgrounds in the signal region. The fiducial cross section is measured to be 1.7 ± 0.42fb. The differential cross section was measured for 13 kinematic variables. No significant deviations …


Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik Jun 2022

Calibration Of The Lux-Zeplin Dual-Phase Xenon Time Projection Chamber With Internally Injected Radioisotopes, Christopher D. Nedlik

Doctoral Dissertations

Self-shielding in ton-scale liquid xenon (LXe) detectors presents a unique challenge for calibrating detector response to interactions in the detector's innermost volume. Calibration radioisotopes must be injected directly into the LXe to reach the central volume, where they must either decay away with a short half life or be purified out. We present an overview of, and results from, the prototype source injection system (SIS) developed at the University of Massachusetts Amherst for the LUX-ZEPLIN experiment (LZ). The SIS is designed to refine techniques for the injection and removal of precise activities of various calibration radioisotopes that are useful in …


General Covariance With Stacks And The Batalin-Vilkovisky Formalism, Filip Dul Jun 2022

General Covariance With Stacks And The Batalin-Vilkovisky Formalism, Filip Dul

Doctoral Dissertations

In this thesis we develop a formulation of general covariance, an essential property for many field theories on curved spacetimes, using the language of stacks and the Batalin-Vilkovisky formalism. We survey the theory of stacks, both from a global and formal perspective, and consider the key example in our work: the moduli stack of metrics modulo diffeomorphism. This is then coupled to the Batalin-Vilkovisky formalism–a formulation of field theory motivated by developments in derived geometry–to describe the associated equivariant observables of a theory and to recover and generalize results regarding current conservation.


Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy Mar 2022

Modeling Chain Packing In Complex Phases Of Self-Assembled Block Copolymers, Anugu Abhiram Reddy

Doctoral Dissertations

Block copolymer (BCP) melts undergo microphase seperation and form ordered soft matter crystals with varying domain shapes and symmetries. We study the con- nection between diblock copolymer molecular designs and thermodynamic selection of ordered crystals by modeling features of variable sub-domain geometry filled with individual blocks within non-canonical sphere-like and network phases that together with layered, cylindrical and canonical spherical phases forms “natural forms” of self- assembled amphiphilic soft matter at large. First, we present a model to revise our understanding of optimal Frank-Kasper sphere-like morphologies by advancing the- ory to account for varying domain volumes. We then develop generic …


Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand Mar 2022

Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand

Doctoral Dissertations

Hybrid particle-mesh numerical approaches are proposed to solve incompressible fluid flows. The methods discussed in this work consist of a collection of particles each wrapped in their own polygon mesh cell, which then move through the domain as the flow evolves. Variables such as pressure, velocity, mass, and momentum are located either on the mesh or on the particles themselves, depending on the specific algorithm described, and each will be shown to have its own advantages and disadvantages. This work explores what is required to obtain local conservation of mass, momentum, and convergence for the velocity and pressure in a …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad Feb 2022

Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad

Doctoral Dissertations

This thesis explores an experimental system probing the effect of energy input (in light-responsive bilayers) on membrane physicomechanical properties and dynamics of response to a trigger. We were inspired by the ability of cell membranes to alter their elastic and permeability properties and shape in response to energy input, change in lipid chemistry, or bilayer composition. Our work demonstrates and sheds new light on the roles of lipid chemical character, light-responsive moieties' incorporation in the membrane, and the lipid bilayer's mechanical properties on membrane response to chemical tuning or energy input. To observe how lipid chemistry affects membrane physical properties …