Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Modeling And Analysis Of Covid-19 And Dynamical Systems In Biology And Physics, Vladimir Grbic Jan 2021

Modeling And Analysis Of Covid-19 And Dynamical Systems In Biology And Physics, Vladimir Grbic

Honors Undergraduate Theses

In this paper, we study various examples of dynamical systems found in nature and extract the necessary concepts to build upon. Then, we develop and propose a new deterministic model for COVID-19 propagation. Our model should serve two purposes. First, we will approximate the infected and deceased individuals after a given time during the pandemic. Then, using a linearized subsystem describing infectious compartments about the disease- free equilibrium (DFE), we will determine the basic reproductive number (R0) by the next-generation matrix method.


Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper Jan 2021

Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper

Honors Undergraduate Theses

The purpose of the following research is to explore molten regolith electrolysis (MRE) methodology for in-situ resource utilization (ISRU) of Highlands lunar regolith, to be explored during the initial Artemis missions. An analysis of potential commercial launch providers for MRE-equipment based on technology-readiness level (TRL), payload mass support, and $ USD/kg payload price is provided. SpaceX is ultimately proposed as a launch provider of MRE equipment following multi-factorial analysis, with the SpaceX Starship human landing system (HLS) variant proposed for supporting MRE payload. Finally, customers of regolith-derived oxygen, aluminum, and silicon are distinguished to form the business case for operating …


Analysis And Design Of Infrared Fiber Bundles For Large Field-Of-View Thermal Imaging, Cesar A. Lopez-Zelaya Jan 2021

Analysis And Design Of Infrared Fiber Bundles For Large Field-Of-View Thermal Imaging, Cesar A. Lopez-Zelaya

Honors Undergraduate Theses

During the DARPA SCENICC program, J. Ford, et al., demonstrated that CFBs provide a compelling route to compact, wide angle imagers. Monocentric lenses readily provide diffraction-limited images over wide field but onto a hemispherically curved image surface. They demonstrated visible CFBs can be tapered, cut and polished to relay curved images to flat sensors. We have shown that this provides a volumetric imaging efficiency a hundredfold larger than bulk optics can produce; a hundred times the resolution in the same volume or a hundred times less volume for the same resolution. Ford's work leveraged commercial fiber bundles available for the …


Photoemission Investigation Of Topological Quantum Materials, Klauss M. Dimitri Jan 2021

Photoemission Investigation Of Topological Quantum Materials, Klauss M. Dimitri

Honors Undergraduate Theses

Topological insulators (TIs) are a class of quantum materials, which behave as insulators in the bulk, yet possess gapless spin-polarized surface states, which are robust against nonmagnetic impurities. The unique properties of TIs make them attractive not only for studying various fundamental phenomena in condensed matter and particle physics, but also as promising candidates for applications ranging from spintronics to quantum computation. Within the topological insulator realm, a great deal of focus has been placed on discovering new quantum materials, however, ideal multi-modal quantum materials have yet to be found. Here we study alpha-PdBi2, KFe2Te2, and DySb compounds including others …


Structure Of Unmodified And Pyroglutamylated Amyloid Beta Peptide In Lipid Membranes, Rowan Hassan Jan 2021

Structure Of Unmodified And Pyroglutamylated Amyloid Beta Peptide In Lipid Membranes, Rowan Hassan

Honors Undergraduate Theses

Alzheimer's Disease (AD) is a devastating neurodegenerative disease that is characterized by brain atrophy, neuronal and synaptic loss, cognitive decline, trouble handling activities of daily life, and ultimately leads to death. Worldwide, at least 30 million people suffer from AD, with 5.8 million suffering in the US alone. Despite extensive basic and clinical research, the underlying molecular mechanisms behind AD remain largely unknown. There are four FDA-approved compounds are used for alleviating symptoms but have no curative potency. The first potentially disease-modifying AD drug, aducanumb, was approved by FDA in June 2021. The main histopathological traits of AD are the …