Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physics

Missouri University of Science and Technology

2006

Paramagnetism

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Percolation Transition And Dissipation In Quantum Ising Magnets, Jose A. Hoyos, Thomas Vojta Jan 2006

Percolation Transition And Dissipation In Quantum Ising Magnets, Jose A. Hoyos, Thomas Vojta

Physics Faculty Research & Creative Works

We study the effects of dissipation on a randomly diluted transverse-field Ising magnet close to the percolation threshold. For weak transverse fields, a percolation quantum phase transition separates a superparamagnetic cluster phase from an inhomogeneously ordered ferromagnetic phase. The properties of this transition are dominated by large frozen and slowly fluctuating percolation clusters. This leads to a discontinuous magnetization-field curve and exotic hysteresis phenomena as well as highly singular behavior of magnetic susceptibility and specific heat. We compare our results to the smeared transition in generic dissipative random quantum Ising magnets. We also discuss the relation to metallic quantum magnets …


Slow Dynamics At The Smeared Phase Transition Of Randomly Layered Magnets, Shellie Huether, Ryan Kinney, Thomas Vojta Jan 2006

Slow Dynamics At The Smeared Phase Transition Of Randomly Layered Magnets, Shellie Huether, Ryan Kinney, Thomas Vojta

Physics Faculty Research & Creative Works

We investigate a model for randomly layered magnets, viz., a three-dimensional Ising model with planar defects. The magnetic phase transition in this system is smeared because static long-range order can develop on isolated rare spatial regions. Here, we report large-scale kinetic Monte Carlo simulations of the dynamical behavior close to the smeared phase transition, which we characterize by the spin (time) autocorrelation function. In the paramagnetic phase, its behavior is dominated by Griffiths effects similar to those in magnets with point defects. In the tail region of the smeared transition the dynamics is even slower: the autocorrelation function decays like …