Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Entire DC Network

Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals Jan 2018

Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals

Masters Theses

"This thesis outlines the development of a system used for determining the surface thermal diffusivity of both non-irradiated and irradiated materials. The motivation for this work is to establish a modulated photothermal radiometry (PTR) system on the campus of Missouri University of Science and Technology. One of the main efforts described in this thesis is the design and construction of the physical apparatus. Along the way, it was necessary to perform a detailed sensitivity analysis of the system to determine whether the expected signal emitted from the sample falls within the bounds of detectivity for the HgCdTe (MCT) detector used …


Universal Wavefront Transmission Through Disordered Media, Jayson Robert Summers Jan 2018

Universal Wavefront Transmission Through Disordered Media, Jayson Robert Summers

Masters Theses

”When electromagnetic waves propagate through random dielectric media, they scatter in a predictable, deterministic way. The process is also fully reversible. If one sends an exiting wave backward through the same material, it will converge back to its original form and location in the same amount of time it took to originally propagate through the material. Due to this predictability, a great deal of research has went into studying these scattering processes in multimode fibers, diffusers, biological tissues, and other media. Scientists have turned random scattering material into focusing lenses, image transmitters, and highly transmitting media by controlling the impinging …


Customized Multi-Group Cross Section Generation With Njoy For Discrete Ordinates Computed Tomography And Radiography Simulation, Steven Michael Wagstaff Jan 2018

Customized Multi-Group Cross Section Generation With Njoy For Discrete Ordinates Computed Tomography And Radiography Simulation, Steven Michael Wagstaff

Masters Theses

"The purpose of this work was to explore the creation of photoatomic multi-group cross section libraries to be used with a software package DOCTORS (Discrete Ordinates Computed TOmography and Radiography Simulator). This software solves the linear Boltzmann equation using the discrete ordinates method [1]. To create these libraries, NJOY2016 was used, creating both fine and broad energy multi-group cross section files. The cross section's accuracy was tested against an equivalent Monte Carlo simulation using MCNP6.

Two simulation geometries were used. The first, a cylindrical water phantom with a single source projection placed in front, simulating an X-ray radiography. The second …


Developing Computational Models For Pulsed-Inductive Plasma Formation, Zachary Aaron Gill Jan 2018

Developing Computational Models For Pulsed-Inductive Plasma Formation, Zachary Aaron Gill

Masters Theses

"Pulsed-inductive discharges are a common method of producing a plasma. They provide a mechanism for quickly and efficiently generating a large volume of plasma for rapid use and are seen in applications including propulsion, fusion power, and high-power lasers. However, some common designs see a delayed response time due to the plasma forming when the magnitude of the magnetic field in the device is at a minimum. New designs are difficult to evaluate due to the amount of time needed to construct a new geometry and the high monetary cost of changing the power generation circuit. To more quickly evaluate …


Nanoporous Carbon Scaffolds For Energy Storage Applications, Waruni Jayawardana Jan 2018

Nanoporous Carbon Scaffolds For Energy Storage Applications, Waruni Jayawardana

Doctoral Dissertations

"Nanoporous carbons (NCs) have become increasingly popular in various fields of research due to their unique properties including tunable pore sizes, higher pore volumes and higher surface areas, as well as being able to produce controlled nanostructures. The work presented here uses NC scaffolds with as active hosts for (1) Li-ion battery electrodes and (2) confined metal hydrides (MH) for hydrogen storage applications. In (1) we investigate the Li diffusion characteristics in hard carbons (HCs) that are important for electrochemical applications. We develop a novel method named Voltage-Relaxation Galvanostatic Intermittent Titration Technique (VR-GITT). Parameters derived from the fitting of electrochemical …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr Jan 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher L. Carr

Doctoral Dissertations

"Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4 and NaAlH4 indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Disorder At First-Order Classical And Quantum Phase Transitions, Ahmed Khalil Ibrahim Jan 2018

Disorder At First-Order Classical And Quantum Phase Transitions, Ahmed Khalil Ibrahim

Doctoral Dissertations

"This dissertation studies the effects of quenched disorder on classical, quantum and nonequilibrium phase transitions. After a short introduction which covers the basic concepts of phase transitions, finite-size scaling and random disorder, the dissertation focuses on four separate but related projects. First, we investigate the influence of quenched disorder with long-range spatial correlations on the nonequilibrium phase transitions in the contact process. We show that the long-range correlations increase the probability to find rare atypical regions in the sample. This leads to enhanced Griffiths singularities and changes the universality class of the transition.

Project 2 and 3 focus on disorder …


Fully Differential Study Of Dissociative Capture In P + H₂ Collisions, Basu Ram Lamichhane Jan 2018

Fully Differential Study Of Dissociative Capture In P + H₂ Collisions, Basu Ram Lamichhane

Doctoral Dissertations

"In recent years, the key role of the projectile coherence properties has been studied in several ion-atom scattering processes. These studies strongly suggested that cross sections could be significantly affected by the projectile coherence properties, especially for fast, heavy ions. In the present study, we used such coherence effects as a tool to sensitively analyze the few- body dynamics of the scattering process. To this end, we performed three kinematically complete experiments on fragmentation of H2 by 75 keV proton impacts. A novel approach was used to analyze coherence and interference effects in the observed cross-sections. The idea was …


Evolving Specialization In An Agent-Based Model Without Task-Switching Costs, Shane Robert Meyer Jan 2018

Evolving Specialization In An Agent-Based Model Without Task-Switching Costs, Shane Robert Meyer

Doctoral Dissertations

"This work examines the possibility of evolving the phenotypic specialization associated with division of labor in an agent-based model without task-switching costs. The model examines two groups competing for vital resources, where members of one group are capable of sharing resources with other agents in their group. Agents attempt to collect resources which allow them to reproduce, with more resources leading to a greater number of offspring by asexual reproduction. Four variants of the model are examined, with combinations of one or two resources and the presence of a foraging risk. The presence of the foraging risk can lead to …


Characterization Of The Cylinderical Split Internal-Loop Photobioreactor With Scenedesmus Microalgae: Advanced Culturing, Modeling, And Hydrodynamics, Laith S. Sabri Jan 2018

Characterization Of The Cylinderical Split Internal-Loop Photobioreactor With Scenedesmus Microalgae: Advanced Culturing, Modeling, And Hydrodynamics, Laith S. Sabri

Doctoral Dissertations

"Microalgae are fast growing photoynthetic microorganisms and it have very wide range of industrial applications such as biofuels and wastewater treatment. These cells can be grown in a wide variety of systems ranging from open culture systems (e.g., ponds) to closed culture systems of photobioreactor (e.g., airlift). The open culture systems exist in the external environment, and hence, are not intrinsically controllable. However, the microalgae production in enclosed photobioreactors faces prohibitively high production costs with special difficulty in reactor design and scale-up. The light availability and utilization efficiency in the photobioreactor in terms of design and scale-up consider as the …


Correlation Between Delay Time And Measured Concentration And Concentration Uncertainty By Neutron Activation Analysis, James Thomas Seman Jan 2018

Correlation Between Delay Time And Measured Concentration And Concentration Uncertainty By Neutron Activation Analysis, James Thomas Seman

Doctoral Dissertations

"For the last several decades, it has been apparent that new methods of identifying explosives can help investigators trace their origins. One way to identify an explosive is through the use of taggants: materials added to a product that encodes information about the product such as when it was manufactured.

This research investigates the survivability of a new identification taggant called the Nuclear Barcode that overcomes some of the downfalls that have been identified in prior taggants. The Nuclear Barcode encodes information as a unique combination of concentrations of rare earths (Ho, Eu, Sm, Lu, and Dy) and precious metals …


Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein Jan 2018

Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein

Doctoral Dissertations

"High-temperature polymer matrix composites (HTPMCs) are susceptible to thermo-oxidation, which accelerates the composites' degradation and reduces the service life. Mechanical properties of HTPMCs deteriorate due to coupled thermo-oxidation and cross-linking mechanisms. Bismaleimides (BMIs) are commonly used high-temperature resins for aerospace applications. This work presents the viability of using experimental weight loss to model the spatial distribution of oxidation when the oxidized polymer matrix is not discernible. Three tasks are introduced: (1) Anisotropic oxidation prediction using optimized weight loss behavior of bismaleimide composites, (2) A multi-scale modeling of thermo-oxidative effects on the flexural behavior of cross-ply bismaleimide composites, and (3) Thermo-oxidative …


Design And Characterization Of Multi-Spectral Underwater Beam-Port For Pool-Type Research Reactors, Meshari Mesfer Alqahtani Jan 2018

Design And Characterization Of Multi-Spectral Underwater Beam-Port For Pool-Type Research Reactors, Meshari Mesfer Alqahtani

Doctoral Dissertations

“The beam-port is a cardinal facility at research reactors necessary for dry irradiation, testing and measurement experiments. The Missouri University of Science and Technology Reactor (MSTR) is one such reactor with a beam-port. Installation of additional beam-port in such reactor facilities can be prohibitive. A novel remedy to this is an underwater beam-port for pool-type reactors. The design and characterization of a conceptual underwater multi-spectral beam-port for neutron and gamma fluxes were completed for the MSTR. The neutron spectra from the MSTR were simulated using the Monte Carlo N-particle (MCNP). The determined neutron spectra were experimentally validated using SAND-II. The …