Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physics

Embry-Riddle Aeronautical University

Theses/Dissertations

2018

Articles 1 - 7 of 7

Full-Text Articles in Entire DC Network

Nonlinear Sliding Mode Observer Applied To Microalgae Growth, Rebecca J. Griffith Dec 2018

Nonlinear Sliding Mode Observer Applied To Microalgae Growth, Rebecca J. Griffith

Doctoral Dissertations and Master's Theses

Modeling biological processes, such as algae growth, is an area of ongoing research. The ability to understand the multitude of parameters that influence this system provides a platform for better understanding the dynamics of microalgae growth. Empirical modeling efforts look to understand sources of driving nutrients that influence harmful algal blooms (HABs). These harmful algal blooms are dense aggregates that have an increasingly negative impact on local economics, marine and freshwater systems, and public health. They result from a high influx of nitrogen and nutrients that drive the algae biomass to exponentially grow. This growth blocks out the sun, potentially …


Impacts Of Anisotropy, Wave Heating, And Neutral Winds On High-Latitude Ionospheric Dynamics, Meghan R. Burleigh Aug 2018

Impacts Of Anisotropy, Wave Heating, And Neutral Winds On High-Latitude Ionospheric Dynamics, Meghan R. Burleigh

Doctoral Dissertations and Master's Theses

Significant amounts of ionospheric plasma can be transported to high altitudes (ion upflow) in response to a variety of plasma heating and uplifting processes such as DC electric fields and precipitation. Once ions have been lifted to high altitudes, transverse ion acceleration by broadband ELF waves can give the upflowing ions sufficient energy for the mirror force to propel these ions to escape into the magnetosphere (ion outflow). In order to accurately examine the connection between upflow and outflow processes, a new two dimensional, anisotropic fluid model is developed.

The new model, named GEMINI-TIA, is based on a Bi-Maxwellian distribution …


Effect Of Chemistry On Electrodynamics In The Martian Dynamo Region, Morgan M. Matheny Aug 2018

Effect Of Chemistry On Electrodynamics In The Martian Dynamo Region, Morgan M. Matheny

Doctoral Dissertations and Master's Theses

Electromagnetic interactions between Mars remnant crustal magnetic fields and solar and planetary ions lead to time and space variations of the ionosphere. In this work, we continue the investigations started by Riousset et al. [2013] and address the effect of chemistry on ion populations in the dynamo region, where ion dynamics are driven by collisions while electrons are still mostly magnetized. We adopt a mesoscale model to simulate dynamics of electrons and ions in the upper atmosphere (100–400 km). Our approach focuses on numerical studies using the Martian Multifluid Magnetohy drodynamic (MF-MHD) Model (M4). The dynamo is a region which …


Nonlinear Acoustic Waves Generated By Surface Disturbances And Their Effect On Lower Thermospheric Composition, Benedict Piñeyro Aug 2018

Nonlinear Acoustic Waves Generated By Surface Disturbances And Their Effect On Lower Thermospheric Composition, Benedict Piñeyro

Doctoral Dissertations and Master's Theses

Recent nonlinear atmospheric models have provided important insight into acoustic waves generated by seismic events, which may steepen into shocks or saw-tooth trains while also dissipating strongly in the thermosphere. Although they have yielded results that agree with observations of ionospheric perturbations, dynamical models for the diffusive and stratified lower thermosphere often use single gas approximations with height-dependent physical properties (e.g. mean molecular weight, specific heats) that do not vary with time (fixed composition). This approximation is simpler and less computationally expensive than a true multi-fluid model, yet captures the important physical transition between molecular and atomic gases in the …


A Study Into Data Analysis Of Varying Types Of Langmuir Probes, William Merritt Aug 2018

A Study Into Data Analysis Of Varying Types Of Langmuir Probes, William Merritt

Doctoral Dissertations and Master's Theses

Langmuir probes are ubiquitously used for in-situ measurements of plasma parameters. These probes have been placed on many different platforms, including experimental sounding rockets for measurements in mesosphere-lower-thermosphere, and also onboard satellites to obtain data sets over an extended period of time in the ionosphere. To accommodate such different situations, many different variations of the Langmuir probe design have been made. This thesis covers two such implementations, as well as the data analysis and issues that can arise with such instruments. The first of these implementations is a set of sweeping Langmuir probes on the Floating Potential Measurement Unit (FPMU) …


Global Formulation And Control Of A Class Of Nonholonomic Systems, Muhammad Rehan Apr 2018

Global Formulation And Control Of A Class Of Nonholonomic Systems, Muhammad Rehan

Doctoral Dissertations and Master's Theses

This thesis study motion of a class of non-holonomic systems using geometric mechanics, that provide us an efficient way to formulate and analyze the dynamics and their temporal evolution on the configuration manifold. The kinematics equations of the system, viewed as a rigid body, are constrained by the requirement that the system maintain contact with the surface. They describe the constrained translation of the point of contact on the surface. In this thesis, we have considered three different examples with nonholonomic constraint i-e knife edge or pizza cutter, a circular disk rolling without slipping, and rolling sphere. For each example, …


Recommissioning Reddi: Reviving A Doppler Asymmetric Spatial Heterodyne Spectrometer For Observing Thermospheric Winds, Robert Kallio Jan 2018

Recommissioning Reddi: Reviving A Doppler Asymmetric Spatial Heterodyne Spectrometer For Observing Thermospheric Winds, Robert Kallio

Doctoral Dissertations and Master's Theses

The REd-line DASH Demonstration Instrument (REDDI) was designed to prove that a Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer could be used to accurately measure thermospheric winds by observing the Doppler shift of the 630nm emission of oxygen in the thermosphere. In 2015, we began a project to redesign the input optics of REDDI to repurpose the instrument from a demonstration unit to a long duration instrument. Integration of REDDI into the INSpIRe (Investigating Near-Space Interaction Regions) trailer at Embry-Riddle Aeronautical University (ERAU), Daytona Beach, began in 2016 with assembly of the new input optics in 2017. REDDI and INSpIRe will …