Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

2006

Plasma physics

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Coefficient Of Bohm Diffusion In Fully Ionized Plasma And Its Theoretical Proof, Ahmad Talaei, Reza Amrollahi Dec 2006

Coefficient Of Bohm Diffusion In Fully Ionized Plasma And Its Theoretical Proof, Ahmad Talaei, Reza Amrollahi

Ahmad Talaei

Unlike classical diffusion that scales inversely as the square of the magnetic field strength, it is quite usual that transport especially in laboratory plasma in not by classical mechanisms, instead it is a rapid diffusion and then loss of plasma particles across magnetic field lines that scales inversely with the magnetic field strength. In this work, by the simple set of single-fluid magnetohydrodynamic (mhd) equations applied for fully ionized plasma in steady state, the empirical bohm diffusion and time are extracted.


Structured Waves Near The Plasma Frequency Observed In Three Auroral Rocket Flights, M Samara, J Labelle Nov 2006

Structured Waves Near The Plasma Frequency Observed In Three Auroral Rocket Flights, M Samara, J Labelle

Dartmouth Scholarship

Abstract. We present observations of waves at and just above the plasma frequency (fpe) from three high frequency electric field experiments on three recent rockets launched to altitudes of 300–900 km in active aurora. The predominant observed HF waves just above fpe are narrowband, short- lived emissions with amplitudes ranging from <1mV/m to 20 mV/m, often associated with structured electron den- sity. The nature of these HF waves, as determined from frequency-time spectrograms, is highly variable: in some cases, the frequency decreases monotonically with time as in the “HF-chirps” previously reported (McAdams and La- Belle, 1999), but in other cases rising frequencies are ob- served, or features which alternately rise and fall in fre- quency. They exhibit two timescales of amplitude variation: a short timescale, typically 50–100 ms, associated with in- dividual discrete features, and a longer timescale associated with the general decrease in the amplitudes of the emissions as the rocket moves away from where the condition f ∼fpe holds. The latter timescale ranges from 0.6 to 6.0 s, corre- sponding to distances of 2–7 km, assuming the phenomenon to be stationary and using the rocket velocity to convert time to distance.


The Structure Of Flux Transfer Events Recovered From Cluster Data, H Hasegawa, B U. Ö Sonnerup, C J. Owen, B Klecker, G Paschmann, A Balogh, H Re`Me Mar 2006

The Structure Of Flux Transfer Events Recovered From Cluster Data, H Hasegawa, B U. Ö Sonnerup, C J. Owen, B Klecker, G Paschmann, A Balogh, H Re`Me

Dartmouth Scholarship

The structure and formation mechanism of a to- tal of five Flux Transfer Events (FTEs), encountered on the equatorward side of the northern cusp by the Cluster space- craft, with separation of ∼5000 km, are studied by apply- ing the Grad-Shafranov (GS) reconstruction technique to the events. The technique generates a magnetic field/plasma map of the FTE cross section, using combined magnetic field and plasma data from all four spacecraft, under the assump- tion that the structure is two-dimensional (2-D) and time- independent. The reconstructed FTEs consist of one or more magnetic flux ropes embedded in the magnetopause, suggest- ing …