Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Hepatocellular Carcinoma Image-Guided Intervention: Quantitative Characterization Of Reagents For Thermochemical Ablation, Emily A. Thompson May 2022

Hepatocellular Carcinoma Image-Guided Intervention: Quantitative Characterization Of Reagents For Thermochemical Ablation, Emily A. Thompson

Dissertations & Theses (Open Access)

Thermochemical ablation (TCA) is a minimally invasive therapy under development for hepatocellular carcinoma, a leading cause of cancer death worldwide. TCA utilizes acid-base chemistry delivered simultaneously to induce local ablation when administered. When delivered via a mixing catheter placed directly into the tumor, acid (e.g., AcOH) and base (e.g., NaOH) react to completion at the catheter tip, producing the acetate salt, water, and releasing heat (Δ>50°C) in sufficient quantities to induce lethal osmotic and thermal stress in tumor cells. However, these two reagents are not distinguishable from tissues with noninvasive imaging modalities, which makes monitoring the delivery of TCA …


Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing, Eric Daniel Morris Jan 2020

Incorporating Cardiac Substructures Into Radiation Therapy For Improved Cardiac Sparing, Eric Daniel Morris

Wayne State University Dissertations

Growing evidence suggests that radiation therapy (RT) doses to the heart and cardiac substructures (CS) are strongly linked to cardiac toxicities, though only the heart is considered clinically. This work aimed to utilize the superior soft-tissue contrast of magnetic resonance (MR) to segment CS, quantify uncertainties in their position, assess their effect on treatment planning and an MR-guided environment.

Automatic substructure segmentation of 12 CS was completed using a novel hybrid MR/computed tomography (CT) atlas method and was improved upon using a 3-dimensional neural network (U-Net) from deep learning. Intra-fraction motion due to respiration was then quantified. The inter-fraction setup …


Optimization Of Design Procedures For Delta Relaxation Enhanced Magnetic Resonance, Daniel J. Martire Feb 2018

Optimization Of Design Procedures For Delta Relaxation Enhanced Magnetic Resonance, Daniel J. Martire

Electronic Thesis and Dissertation Repository

Delta relaxation enhanced magnetic resonance (dreMR) is a magnetic resonance imaging (MRI) method that produces contrast based on longitudinal relaxation dispersion. Through modulation of the magnetic field using an actively-shielded, field-cycling insert coil, this technique increases probe specificity and suppresses remaining signal. However, significant improvements are needed. This thesis addresses two advancements in dreMR with a focus on optimizing design procedures. A general procedure was developed to design split power solenoid magnets. The procedure was then applied to the design of a switched-field exposure system. A coil was constructed and the method was validated. This procedure can be used for …


Fast Monte Carlo Simulations For Quality Assurance In Radiation Therapy, Yuhe Wang Dec 2017

Fast Monte Carlo Simulations For Quality Assurance In Radiation Therapy, Yuhe Wang

Arts & Sciences Electronic Theses and Dissertations

Monte Carlo (MC) simulation is generally considered to be the most accurate method for dose calculation in radiation therapy. However, it suffers from the low simulation efficiency (hours to days) and complex configuration, which impede its applications in clinical studies. The recent rise of MRI-guided radiation platform (e.g. ViewRay’s MRIdian system) brings urgent need of fast MC algorithms because the introduced strong magnetic field may cause big errors to other algorithms. My dissertation focuses on resolving the conflict between accuracy and efficiency of MC simulations through 4 different approaches: (1) GPU parallel computation, (2) Transport mechanism simplification, (3) Variance reduction, …


An Automated Syringe Pump System For Improving The Reproducibility Of Dynamic Hyperpolarized Mri Phantoms, Harlee G. Harrison Aug 2016

An Automated Syringe Pump System For Improving The Reproducibility Of Dynamic Hyperpolarized Mri Phantoms, Harlee G. Harrison

Dissertations & Theses (Open Access)

AN AUTOMATED SYRINGE PUMP SYSTEM FOR IMPROVING THE REPRODUCIBILITY OF DYNAMIC HYPERPOLARIZED MRI PHANTOMS

Harlee Grace Harrison, B.S.

Advisory Professor: James Bankson, Ph.D.

Magnetic Resonance Imaging (MRI) is a powerful tool in the diagnosis of cancer due to its ability to provide good soft tissue contrast and image resolution without the use of ionizing radiation. The use of hyperpolarized pyruvate as a contrast agent for tumor metabolism during MR scans has the potential to provide information about tumor metabolism in vivo that is not available from traditional imaging measurements or any other method. Hyperpolarization is achieved through dynamic nuclear polarization. …


Hyperpolarized 129xe Magnetic Resonance Imaging Of Radiation-Induced Lung Injury, Ozkan Doganay Oct 2015

Hyperpolarized 129xe Magnetic Resonance Imaging Of Radiation-Induced Lung Injury, Ozkan Doganay

Electronic Thesis and Dissertation Repository

Lung cancer is the largest contributor to cancer-related mortality worldwide. Only 20% of stage III non-small cell lung cancer patients survive after 5-years post radiation therapy (RT). Although RT is an important treatment modality for lung cancer, it is limited by Radiation-Induced Lung Injury (RILI). RILI develops in two phases: (i) the early phase (days-weeks) referred to radiation pneumonitis (RP), and (ii) the late phase (months). There is a strong interest in early detection of RP using imaging to improve outcomes of RT for lung cancer. This thesis describes a promising approach based on 129Xe gas as a contrast …


Advances In Image Acquisition And Filtering For Mri Neuroimaging At 7 Tesla, Andrew T. Curtis Sep 2014

Advances In Image Acquisition And Filtering For Mri Neuroimaging At 7 Tesla, Andrew T. Curtis

Electronic Thesis and Dissertation Repository

Performing magnetic resonance imaging at high magnetic field strength promises many improvements over low fields that are of direct benefit in functional neuroimaging. This includes the possibility of improved signal-to-noise levels, and increased BOLD functional contrast and spatial specificity. However, human MRI at 7T and above suffers from unique engineering challenges that limit the achievable gains. In this thesis, three technological developments are introduced, all of which address separate issues associated with functional magnetic resonance neuroimaging at very high magnetic field strengths.

First, the image homogeneity problem is addressed by investigating methods of RF shimming — modifying the excitation portion …


High Power Systems For Dynamic Field Control And Shielding In The Mr Environment, Dustin W. Haw Nov 2011

High Power Systems For Dynamic Field Control And Shielding In The Mr Environment, Dustin W. Haw

Electronic Thesis and Dissertation Repository

This thesis addresses several aspects of gradient and shim coil design and fabrication. New design techniques are coupled with experimental construction methods to expand small animal insert gradient and shim technology. The design techniques are also applied to other areas of magnetic resonance hardware.

A custom 2-axis gradient insert coil is designed and fabricated for the purpose of eddy current characterization. The construction tolerances were examined via bench top inductance measurements and eddy currents measurement inside a 7.0 T head-only MR system. A great deal of freedom is available when positioning shielding coils with respect to their corresponding primary coils …