Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Utah State University

Selected Works

Disturbance

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Seasonal And Longitudinal Dependence Of Equatorialdisturbance Vertical Plasma Drifts, Bela G. Fejer, J. W. Jensen, S. Y. Su Oct 2008

Seasonal And Longitudinal Dependence Of Equatorialdisturbance Vertical Plasma Drifts, Bela G. Fejer, J. W. Jensen, S. Y. Su

Bela G. Fejer

[1] We used equatorial measurements from the ROCSAT-1 satellite to determine the seasonal and longitudinal dependent equatorial F region disturbance vertical plasma drifts. Following sudden increases in geomagnetic activity, the prompt penetration vertical drifts are upward during the day and downward at night, and have strong local time dependence at all seasons. The largest prompt penetration drifts near dusk and dawn occur during June solstice. The daytime disturbance dynamo drifts are small at all seasons. They are downward near dusk with largest (smallest) values during equinox (June solstice); the nighttime drifts are upward with the largest magnitudes in the postmidnight …


Average Nighttime F Region Disturbance Neutral Winds Measured By Windi Uars: Initial Results, J. T. Emmert, Bela G. Fejer, G. G. Shepard, B. H. Solheim Nov 2004

Average Nighttime F Region Disturbance Neutral Winds Measured By Windi Uars: Initial Results, J. T. Emmert, Bela G. Fejer, G. G. Shepard, B. H. Solheim

Bela G. Fejer

[1] We use low- and mid-latitude wind data from the Wind Imaging Interferometer (WINDII) on board the Upper Atmosphere Research Satellite (UARS) to study the average response of nighttime upper thermospheric winds to geomagnetic activity. We calculate perturbation winds in magnetic coordinates and analyze them as a function of magnetic local time, latitude, geomagnetic activity, and solar EUV flux. The nighttime zonal disturbance winds are predominately westward, with the strongest effects extending from dusk at 70° to midnight at 45°. Westward disturbance winds are also observed throughout most of the night at low latitudes, where they change to eastward at …


Low Latitude Ionospheric Disturbance Electric Field Effects Duringthe Recovery Phase Of The October 19-21, 1998 Magnetic Storm, Bela G. Fejer, J. T. Emmert Dec 2003

Low Latitude Ionospheric Disturbance Electric Field Effects Duringthe Recovery Phase Of The October 19-21, 1998 Magnetic Storm, Bela G. Fejer, J. T. Emmert

Bela G. Fejer

[1] Low-latitude ionospheric electric fields and currents are often strongly disturbed during periods of enhanced geomagnetic activity. These perturbations can last for several hours after geomagnetic quieting. We use incoherent scatter radar measurements from Jicamarca and Arecibo during 19–21 October 1998 to study, for the first time, the low-latitude disturbance electric fields during the recovery phase of a large magnetic storm. On 19 October the Jicamarca data showed initially large and short-lived (time scale of about 10–20 min) upward and westward drift perturbations in the early afternoon sector, due to the penetration of strong magnetospheric electric fields probably driven by …


Altitude Dependence Of Middleand Low-Latitude Thermospheric Disturbance Winds Measured By Windii, J. T. Emmert, Bela G. Fejer, G. G. Shepard, B. H. Solheim Jan 2002

Altitude Dependence Of Middleand Low-Latitude Thermospheric Disturbance Winds Measured By Windii, J. T. Emmert, Bela G. Fejer, G. G. Shepard, B. H. Solheim

Bela G. Fejer

[1] Thermospheric neutral winds exhibit strong altitudinal and latitudinal variation during geomagnetically quiet and active times. We use daytime middle and low-latitude neutral winds measured by the Wind Imaging Interferometer (WINDII) instrument on board the Upper Atmosphere Research Satellite (UARS) over the 90–275 km height range to study the altitude and season dependent climatology of disturbance winds (i.e., with quiet time patterns removed) in magnetic coordinates. The daytime perturbations winds are generally equatorward and westward and decrease toward the magnetic equator. Both the zonal and meridional components decrease sharply below 120 km and are essentially insignificant below 100 km. The …


Climatology Of Mid- And Low-Latitude F Region Disturbance Winds Measured By Windii, J. T. Emmert, Bela G. Fejer, C. G. Fesen, G. G. Shepherd, B. H. Solheim Nov 2001

Climatology Of Mid- And Low-Latitude F Region Disturbance Winds Measured By Windii, J. T. Emmert, Bela G. Fejer, C. G. Fesen, G. G. Shepherd, B. H. Solheim

Bela G. Fejer

No abstract provided.


Average Daytime Disturbanceneutral Winds Measured By Uars: Initial Results, Bela G. Fejer, J. T. Emmert, G. G. Shepard, B. H. Solheim Jan 2000

Average Daytime Disturbanceneutral Winds Measured By Uars: Initial Results, Bela G. Fejer, J. T. Emmert, G. G. Shepard, B. H. Solheim

Bela G. Fejer

Thermospheric neutral winds play important roles on the dynamics of the upper atmosphere. We use extensive F region zonal and meridional wind data measured by the Wind Imaging Interferometer (WINDII) instrument on board the Upper Atmosphere Research Satellite (UARS) to study the mid-and low-latitude daytime average perturbation winds during magnetically disturbed periods. We have determined the perturbation winds by subtracting the quiet time wind values along the satellite orbits. Our data indicate large changes in the latitudinal profiles of both the zonal and meridional disturbance winds from morning to afternoon hours. The early morning zonal disturbance winds are eastward near …


Satellite Studies Of Mid- And Low-Latitude Ionospheric Disturbancezonal Plasma Drifts, L. Scherliess, Bela G. Fejer May 1998

Satellite Studies Of Mid- And Low-Latitude Ionospheric Disturbancezonal Plasma Drifts, L. Scherliess, Bela G. Fejer

Bela G. Fejer

We use low- and mid-latitude zonal ion drift observations from the DE-2 satellite and auroral electrojet indices to study the temporal and latitudinal variations of F-region perturbation drifts during magnetically disturbed conditions. These perturbation drifts are driven by magnetospheric and ionospheric disturbance dynamo electric fields with time constants from less than one to several hours. We determine, initially, the drift patterns due to the prompt penetration of magnetospheric electric fields and of longer lasting disturbances. In this study, we concentrate on the properties of the longer lasting perturbations which occur with latitude-dependent time delays after enhancements in the high-latitude ionospheric …


Equatorial Disturbance Dynamo Electric Fields, Bela G. Fejer, M. F. Larsen, D. T. Farley Jul 1983

Equatorial Disturbance Dynamo Electric Fields, Bela G. Fejer, M. F. Larsen, D. T. Farley

Bela G. Fejer

F-region vertical drift data from Jicamarca, Peru show that equatorial east-west electric fields are sometimes perturbed 16-24 hours after the onset of geomagnetic storms. These disturbance dynamo electric fields, which must be caused primarily by the action of neutral winds at low and middle latitudes, decrease and sometimes even reverse the quiet time electric field pattern during both daytime and nighttime. The long delay excludes the possibility that gravity waves are responsible and suggests that the thermospheric circulation is disturbed. The data also show that after some storms there are no such delayed disturbances, a fact which may be due …